
Diploma Thesis
University of Applied Sciences Furtwangen, Germany
Faculty of Computer Science - Computer Networking

Server-based
Virus-protection On

Unix/Linux

by
Rainer Link

<mail@rainer-link.de>

Advisor: Prof. Hannelore Frank

Advisor: Prof. Dr. Rainer Mueller

Finished: May, 28 2003

Public Release: August, 2003

Preface

Abstract

Evaluation and development of server-based anti-virus solutions, running on
Linux/Unix, using the Internet Content Adaption Protocol (ICAP). The diploma
thesis covers proof-of-concept solutions for web proxy (Squid), eMail server
(sendmail/postfix) and file server (Samba), with focus on the latter one aiming
to provide a (fully-featured) product.

Motivation

On 07/21/1999, I sent the first patch to the maintainer of the AMaViS project
(A Mail Virus Scanner, http://www.amavis.org/, GPL’ed1) fixing the An-
tiViral Toolkit Pro/Linux call. Since then - among other stuff - I wrote and
maintained several anti-virus modules (and still do). So, with the help of other
people, AMaViS supports a wide range of anti-virus products. But wouldn’t
it be easier to maintain only one anti-virus module, implementing a common
protocol, to support all those anti-virus scanners?
Also, back in 1999, I was looking for an on-access virus scanning solution for
Samba fileservers2, receiving a first Linux kernel-based solution via email in
June ’99. More than a year later, I came across the Samba Virtual File System
(VFS)3. A half year later, I digged into the Samba VFS and started to work
on a small piece of code which eventually became the samba-vscan project: on-
access file scanning directly integrated into Samba (GPL’ed, too).
As nearly all the code I wrote past years was put under an Open Source License,
I decided to release this thesis under the terms of the GNU Free Documentation
License.

1GNU General Public License, see http://www.gnu.org/copyleft/gpl.html
2see e.g. http://www.geocrawler.com/archives/3/281/1999/4/0/1652065/
3see e.g. http://sourceforge.net/mailarchive/forum.php?thread id=219140&forum id=4829

ii

Overview of the Thesis

Chapter 1 gives an overview of computer-viruses and some other types of
malware. As well as anti-virus technologies and anti-virus deployment.

Chapter 2 explains possible means to integrate third party anti-virus scanners
into scripts and programs.

Chapter 3 discusses the Internet Content Adaption Protocol (ICAP) with the
focus to use this protocol for an anti-virus service. The developed ”icap-
client” utility for scanning any file on disk using an ICAP anti-virus facility
will be dissected, too. The results of some performance testings will be
discussed as well.

Chapter 4 explains briefly the use of AMaViS for protecting the mail server
and the ICAP integration.

Chapter 5 shows two possible concepts for on-access, real-time scanning of
Samba shares; focused on the direct Samba integration as implemented by
the samba-vscan project. Results of file retrieval tests illustrates impacts
on performance.

Chapter 6 discusses concepts for protecting HTTP/FTP transfers.

Chapter 7 summerizes the results and gives a short future outlook.

Credits

First of all, I’d like to thank my advisors Prof. Hannelore Frank and Prof. Dr.
Rainer Mueller for their support, feedback and suggestions.

A professional thank you goes to the following persons and/or companies:

• SuSE Linux AG for funding this diploma thesis and my AMaViS work for
three years.

• Travis Priest, Rui Ataide (Symantec USA) and Gerald Maronde (Syman-
tec Germany) for providing me with the latest Symantec AntiVirus Engine
product before it was public available and for various ICAP/Symantec
AntiVirus Scan Engine related discussions.

• Martin Stecher (WebWasher AG) for some email exchange about ICAP
and WebWasher; Oxana Herzog and Elka Plattmann for sending a special
trial evaluation key for the WebWasher CSM suite.

• Christian Hofmann of DATSEC for offering the latest Kaspersky An-
tiVirus for File servers and a one year license key.

iii

Feedback et al

Please send feedback, corrections, suggestions or even flames to

Rainer Link <mail@rainer-link.de>

I plan to maintain this thesis and release updated versions once in a while.

History

1.00 - final version (May, 28 2003); non-public
1.01 - changed title page, added history, added Appendix A (GNU FDL).

released to public
1.01a - corrected the vfs options setting, thanks for Stefan Metzmacher

for the report (August, 9 2003)

License

This document is licensed under the terms of the GNU Free Documentation
License (see http://www.fsf.org/licenses/fdl.html).

Copyright (c) 2002-2003 Rainer Link, OpenAntiVirus.org.
Permission is granted to copy, distribute and/or modify this
document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the
Free Software Foundation; with the Invariant sections "History"
and "Credits; no Front-Cover Texts, and the Back-Cover Text
"Diploma Thesis by Rainer Link. Published by OpenAntiVirus.org".
A copy of the license is included in the section entitled "GNU
Free Documentation License".

iv

Contents

1 Introduction 1
1.1 Computer Viruses and Malware 1

1.1.1 Introduction & Definition 2
1.1.1.1 The Infection Mechanism 2
1.1.1.2 The Trigger . 2
1.1.1.3 The Payload . 2

1.1.2 Classification of Computer Viruses 3
1.1.2.1 Type of Host Victim 3
1.1.2.2 Type of (Infection) Technique 4
1.1.2.3 Special Virus Features 5

1.1.3 Macro & Script Viruses 6
1.1.3.1 Macro viruses 6
1.1.3.2 Scripting Viruses 8

1.1.4 Worms . 8
1.2 Anti-Virus Technologies . 9

1.2.1 Scanner . 9
1.2.2 Integrity Checker . 11
1.2.3 Behaviour Blocker . 11

1.3 Anti-Virus Strategy . 11

2 Server-based Virus Protection on Unix/Linux 13
2.1 Requirements & Aims . 13
2.2 Integration of Anti-Virus Products 14

2.2.1 Command line Scanner 14
2.2.2 Application Programming Interface 15
2.2.3 Client-server Communication 17

2.2.3.1 Proprietary Protocols 18
2.2.3.2 Generalized Frameworks 20

3 ICAP 23
3.1 Overview . 23

3.1.1 Introduction . 23
3.1.2 Architecture . 25
3.1.3 ICAP-enabled Anti-Virus Solutions 27

3.1.3.1 Symantec AntiVirus Scan Engine 27

vi Contents

3.1.3.2 WebWasher Content Security Management (CSM)
Suite . 28

3.2 Technical Specification . 29
3.2.1 Overview . 29
3.2.2 ICAP request . 30
3.2.3 ICAP response . 32
3.2.4 Performance Consideration 33
3.2.5 ICAP extensions . 34

3.3 Example ICAP Client Implementation 35
3.3.1 Usage of ”icap-client” . 35
3.3.2 Client Implementation Details 37

3.4 Performance . 39
3.4.1 Hardware . 39
3.4.2 Results . 40

3.5 Conclusion . 46

4 Mailserver - AMaViS 49
4.1 MTA-Integration . 49

4.1.1 Sendmail . 49
4.1.2 Postfix . 51

4.2 Features . 52
4.3 Conclusion . 53

5 Fileserver - samba-vscan 55
5.1 Concepts . 55

5.1.1 Not Integrated into Samba 55
5.1.2 Integrated into Samba . 57
5.1.3 Pros & Cons . 58

5.2 Requirements . 58
5.3 Performance . 65
5.4 Conclusion . 69

6 FTP-/Web-Transfer - squid-icap 71
6.1 Concepts . 71

6.1.1 Apache as Proxy . 71
6.1.2 Squid as Proxy . 71

6.2 Performance . 73
6.3 Conclusion . 77

7 Résumé 79

A GNU Free Documentation License 91

Chapter 1

Introduction

This chapter gives an overview about computer-viruses and anti-virus tech-
niques. If the reader is interested in a particular topic, the given reference(s)
are worth a reading1.

1.1 Computer Viruses and Malware

The term ”computer virus” was first applied to self-reproducing computer pro-
grams by Len Adelman back in 1983. One year later, Fred Cohen ”scientifically
defined the term computer virus” ([EK2001, p. 6]):

”We define a computer ’virus’ as a program that can ’infect’ other
programs by modifying them to include a possibly evolved copy of
itself. With the infection property, a virus can spread throughout a
computer system or network using the authorisations of every user
using it to infect their programs. Every program that gets infected
may also act as a virus and thus the infection grows” ([FC1984]).

So, in short a virus is a program which is able to replicate with little or no
user intervention, and the replicated program(s) are able to replicate further.
Like its biological counterpart it needs a host. In general, a computer virus
is platform-dependent, i.e. a virus written for MS-DOS will not run under
Linux/Unix (but it may rung of course under DOS emulators like DosEmu or
”Virtual PC systems” like VMWare). One exception are macro viruses (see
below) or Java viruses (like BeanHive, see [CR1999, pp. 9]); and some few
examples of computer viruses written for Windows and Linux, like Lindose aka
Winux ([JK2001, p. 150]). The first virus for Apple II was the Elk cloner
virus back in 1981. In 1986, the first virus for the IBM PCs and compatibles
appeared: the Brain (aka Pakistani or Ashar) virus ([EK2001, p. 6], [AM2000]).
[EK2001], [FP2000] or [AM2000] cover history in depth.

1If possible, more than one reference has been mentioned. A bibliography reference without
a page reference covers a topic solely and/or in depth.

2 Introduction

1.1.1 Introduction & Definition

Generally speaking, a computer virus consists of three parts ([MR1995]):

• the infection mechanism,

• the trigger,

• the payload.

As mentioned above, a computer virus must at least have the infection
mechanism part.

1.1.1.1 The Infection Mechanism

As the name already implies the infection mechanism ([CS1995, p. 10])
searches for one or more suitable victims and checks to avoid multiple infections
if the host is already infected or not (not every virus does this; some viruses
infect a host multiple times due to bugs). After that, simply speaking, the virus
body is copied into the victim. The easiest method to do so is (by) overwriting
the code of the victim. Other methods are putting the code in front of or at
the end of a file.

1.1.1.2 The Trigger

A trigger ([CS1995, p. 10]) is used for starting the possible payload, i.e. on a
particular event, the payload is executed. Such an event could be a special day
(Friday, 13th) or when the infection counter has reached a pre-defined value.

1.1.1.3 The Payload

Figure 1.1: Payload of Ambulance Car virus, taken from [FSC2003]

A possible payload ([CS1995, p. 8]) causes transient or permanent damage,
e.g. displaying an animation on the screen (e.g. a red cross car moves along
the screen, see figure 1.1); or formatting the hard disk drive or manipulation of
data.

1.1 Computer Viruses and Malware 3

Of course, damage may even happen unintentionally, e.g. due to a pro-
gramming error or if an old DOS virus causes trouble within the Windows
environment (see e.g. [MO1997]). Damage may be caused by over-reaction by
the user ([BSI1994, p. 1-8]), too.

1.1.2 Classification of Computer Viruses

The classification of computer viruses ([MR1995]) can be done via several
ways:

• type of host victim,

• type of infection technique,

• special virus features.

1.1.2.1 Type of Host Victim

As of type of host victim ([MR1995]) we can distinguish between

• boot (DBR) sector and master boot record (MBR) virus,

• file virus,

• companion virus,

• multipartite virus.

Figure 1.2: Overwriting / Appending virus

4 Introduction

A boot virus infects the boot sector of a floppy disc and/or master boot
record or boot sector of a hard disc. Such a virus can infect the com-
puter system, when the computer is booted from an infected floppy disk.
As the code in the MBR/DBR is started by the BIOS after it does the
POST (Power On Self Test), the virus gets activated even before the Op-
eration System has been started and most likely ”hooks” some particular
Interrupts (e.g. BIOS INT13h or DOS INT 21h) for performing its tasks.
Most boot sector viruses are memory-resident, so they can easily infect
every non-write protected floppy when it is accessed. Most viruses of this
type save a copy of the original boot sector/master boot record in an un-
used sector of the disk. A boot virus may be ”placed” into the computer
system by a so-called ”dropper”, i.e. a program which simply drops the
boot virus.

A file virus infects (executable) files, either by overwriting the file (overwrit-
ing virus) or by appending the virus code at the beginning or end of the
file (appending virus). An overwriting virus destroys the original file upon
infection. Most appending viruses put their virus code at the end of the
file and put a jump to the virus code at the beginning of the file, so that
the virus code is started first upon execution.

A companion virus looks for programs with the extension .BAT or .EXE
and then creates a .COM file with the same name (i.e. TETRIS.COM,
if a program TETRIS.EXE exists). If only the program name is entered
(here: TETRIS), DOS per default looks up first for a matching .COM,
.EXE and then .BAT file. So, TETRIS.COM will be started (instead of
TETRIS.EXE, which was originally the intention of the user). Therefore,
the companion virus is started first and can then start TETRIS.EXE
([RS1996, p. 24-25]).

A multipartite or hybrid virus uses more than one infection technique, e.g.
a combination of a boot sector and file virus and therefore infects DBR
/ MBR and files. Or viruses which infect Office files via Visual Basic
for Applications (VBA) and Visual Basic Script (VBS) files (see section
macro viruses, p. 6); or viruses which infect Win32 files and office files,
like Win32/W97M.Beast ([PS1999, pp. 6]).

The basic infection technique of file viruses for Windows systems are some-
what similar to DOS viruses (see above), but (much) more complicated as the
file format is more complex, too ([PS1998], [PS2000]). This applies basically
to Linux viruses ([JK2000], [MVO2000]). Even viruses for both platforms are
possible ([JK2001]).

1.1.2.2 Type of (Infection) Technique

Basically, the technique ([MR1995]) can be distinguished between

• direct action (non-memory resident),

1.1 Computer Viruses and Malware 5

• memory resident.

A direct action virus ([MR1995]) does not stay in memory, so it’s only ac-
tive when an infected program has been started and only by this event it
can replicate . A direct action virus is not very complex and can therefore
be very small (the Trivial-31 virus is only 31 bytes ”big”) . In most cases,
a direct action virus does not spread as fast as a memory resident virus.

A memory resident virus ([MR1995]) installs itself into RAM and may be
active as long as the computer is running. This can be achieved via several
ways, depending on the operation system: DOS provides a mechanism
called ”terminate-and-stay-resident” (TSR), for Windows as a ”virtual
device driver” (VxD), for Windows NT as an NT-service, for Linux as
a loadable kernel module. Only a memory resident virus may use some
”modern” virus techniques like stealth capabilities. For the memory res-
ident virus, one can differentiate between a fast infector ([RS1996, p.
174]) and slow infector ([CS1995, p. 19], [MR1995]). Both got their
name due to the speed they spread. The first one infects every program
which is being accessed (read/write) or even all files being listed in a di-
rectory listning (e.g. when the ”dir” command is being executed). The
latter one, in contrast, infects only a file, when it’s being written (e.g.
during compilation of a new program or some older programs stored their
configuration settings directly into the executable file). Therefore, a slow
infector may bypass file integrity checkers.

1.1.2.3 Special Virus Features

The following special virus features ([MR1995]) will be explained briefly:

• stealth technique,

• retro capabilities,

• polymorphism.

Some special virus features can only be used by memory-resident viruses.

A stealth virus ([RS1996, p. 173], [MR1995], [CS1995, p. 18]) tries to hide
itself by hooking several interrupts like BIOS Int 13h or DOS Int 21h.
Assumed, an anti-virus program reads the MBR via BIOS Int 13h to scan
for viruses, the virus can intercept this and ”redirect” the read call to
the saved copy of the original, uninfected MBR. Therefore, the anti-virus
program won’t find any virus. Or, if a virus scanner scans a file, this file
must be opened first. The open call, ”redefined” by the virus, will first
remove the virus from the file and then call the original open call. After
the scanning of the file has been finished, the file will be closed by the
virus scanner. And the modified close call will infect the file again.

6 Introduction

A retro virus ([CN1999, p. 12]) avoids to infect particular file names, like
”scan.exe” or ”f-prot.exe” (as in most cases those files belong to McAfee
VirusScan or F-Prot AntiVirus respectively) as most anti-virus software
checks their integrity upon start. This mechanism can be used by non-
memory resident viruses, too, of course. A resident virus may even inter-
cept the execution of ”scan.exe” and display a ”faked” error message like
”not enough memory”.

A polymorphic virus ([CS1995, pp. 20], [MR1995], [RS1996, pp. 174],
[CN1996]) is being ”encrypted” and changes infection its shape and struc-
ture of the (de|en)cryption routine by each infection but the basic func-
tionality is always the same. Here’s a very easy example to simply get the
basic idea how it works: a CPU has a set of registers, e.g. the accumulator
register AX. For example, this register should be set to zero. This can be
done by setting the register to zero, i.e. MOV AX, 0. Or by subtracting
the current value of the AX register with itself, i.e. SUB AX, AX. Or
by the exclusive-or operation, i.e. XOR AX, AX. In short, the effect is
just the same, but each operation will result in a different opcode. This
technique is also known as ”mutation”.

1.1.3 Macro & Script Viruses

1.1.3.1 Macro viruses

Probably the best definition of a macro virus has been given by Vesselin Bontchev
([VB1997, p. 178]): ”A macro virus is a set of one or more macros which set is
capable of replication itself recursively”.

It’s believed, the first macro virus, written by an US-security specialist,
was ”WM/DMV” and ”XM/DMV” - the so called ”demo macro virus” for
Microsoft Word (WM = Word Macro) and Excel (XM = Excel Macro), back
in 1994. The first big ”impact” was caused by WM/Concept (1995), because
it was the first macro virus found ”in-the-wild”([MH1998, p. 289], [IM1999a,
p. 13]), i.e. it was reported by end users - even Microsoft shipped it on CD to
customers ([VB1996, p. 97]). We will focus on Word macro viruses here. For
doing automatic ”tasks”, Microsoft invented a macro language called WordBasic
(Word 2.0-Word97), and later Visual Basic for Applications . Those macros are
stored within the ”document” itself, and not as e.g. by Ami Pro2 in a separate
file. So, if you get a document, you’ll receive the macros in it, too. Strictly
spoken, only template files (.DOT files) can contain macros (Word 2-Word 6).
Actually, the virus has to convert a normal word document (.DOC file) first
into a template, infect it, and rename the file from .DOT to .DOC, so the user
thinks it’s just a normal word document file. The DOC → DOT conversion is
actually done by Word itself, the macro virus must only set a specific flag. When
the user opens such an infected ”document”, the virus gets activated (mostly)
automatically due to several so-called Auto macros (e.g. AutoOpen, AutoExec
and AutoClose). The next step is to infect the global template file, in most

2a text processing software

1.1 Computer Viruses and Malware 7

cases this is the NORMAL.DOT file. As NORMAL.DOT is launched every
time Word is started, the macro virus is active every time and is able to infect
every word document. But the mentioned Auto macros are not the only way a
macro virus can rely on. Other possibilities are shortcuts (like ALT+S), forms
or buttons. Many variants of macro viruses have been created automatically:
when a word file is being saved, functions from the OLE32.DLL (OLE = Object
Linking and Embedding, DLL = Dynamic Link Library) are being used. But
as some versions of this DLL are buggy, a file may get slightly damaged when it
is saved. Therefore, the macro code might by changed slightly, but the macro
virus itself may remain intact and is able to spread. As the macro code has
changed, a new variant has been created ([VB1997, pp. 177], [SK1999]).

By Office97, Microsoft introduced a new (macro) language: Visual Basic
for Applications ([DAJ1997], [SK1999]). Now, even regular documents can
contain macros, so conversion from template to document is no longer necessary.
Moreover, Word97 provides an upconversion feature for documents created with
older Word releases ([DAJ1997], [VB1997, pp. 188], [VB1998]). So, in most
cases macros are converted automatically, too. The commands are not really
converted from WordBasic to VBA, but simply speaking just ”WordBasic” is
placed in front of every instruction. With Service Release 1 (SR1) for Office97,
Microsoft tried to make it harder for macro viruses to spread: macros can no
longer be copied from the global template into the word document ([VB1998,
pp. 157], [JK1998, pp. 144]). But this very weak kind of protection can be
bypassed by some tricks, e.g. export the VBA code into a file and re-import
this file later into the word document ([KT1999, p. 302]). Upconversion is also
done in Office 2000 ([RJZ1999, pp. 223]).

Macro viruses can ”snatch” ([VB1996, p. 115], [VB1997, pp. 180]) existing
macros, i.e. a macro is replaced by a macro with the same name, which is
already present in the global template (e.g. user macros, macros from another
macro virus, which has infected the template already before). As an example,
many macro viruses have snatched macros from the mostly useless Macro pro-
tection tool ScanProt from Microsoft ([VB1997, p. 183]). By macro snatching,
a macro virus can mutate to a new variant or a new macro virus. Multiple
infections of the normal template can create problems for anti-virus tools, e.g.
cleaning it may create a new macro virus if the anti-virus tool thinks it is only
infected by one macro virus (see [VB1997, pp. 180] for details). Multiple in-
fections by so called Word Class Infectors 3 are sometimes called ”sandwiches”
([KT1999, p. 304]).

Some ”advanced features”, already known by (DOS) viruses, have been ”re-
invented” by macro viruses, too. A stealth macro virus can display the
error message ”not enough memory” or a faked dialog box, when the user calls
the menu item ”Tools/Macro” (this could be used to see which macros exist).
The start of the VBA Editor could also be blocked or the for- and background
colour is set to white, so that no lines of code can be viewed ([VB1996, pp. 115],
[JK1999], [IM1999b, pp. 19]). A polymorphic macro virus can change the

3”Class infectors are Office97 macro viruses that consist of a single module - the class
module, which is always named the same (usually ThisDocument).” ([KT1999, p. 301])

8 Introduction

code by every infection, i.e. adding a random comment to the code, change some
instructions and so on. The polymorphic capabilities are limited, because Word
Basic/VBA is rather slow ([VB1996, pp. 112], [VB1997, pp. 192], [ANMK1999,
pp. 14], [VBKT2002]). A macro virus is anti heuristic if the virus tries to
make detection more difficult, e.g. by hiding the macro code in (document)
variables, autotexts or encrypted strings ([VB1996, p. 110]).

1.1.3.2 Scripting Viruses

Viruses written in VBScript (Visual Basic Script) ([VBM1998, pp. 13]) /
Jscript (Windows) or in a shell script language (like bash in Linux/Unix) are
called script(ing) viruses. ”Microsoft VBScript (VBS) is a subset of the
Microsoft Visual Basic programming language [..] VBS files can be embed-
ded into HTML documents to make them more interactive. [..]” ([MVO1999,
pp. 227]). VBS is supported in MS Outlook, Microsoft Internet Explorer or
via the Windows Scripting Host. It’s even possible to write a virus, which
works with VBA and VBS and can infect Office files and vice versa ([KT1999,
pp. 311]). Some other applications, like Corel Draw, offer their own scripting
language, e.g. CorelScript, which are used by viruses, too ([NF1999, pp. 7]).
Script viruses for Linux/Unix can be written e.g. in a shell script language (like
bash) or Perl, Phython and so on ([SB1996, p. xxviii]). Some advanced tech-
niques, known from DOS or macro viruses, are possible, too, e.g. polymorphism
([VBKT2002]). Figure 1.3 shows a screenshot of a VBS virus construction kit
(construction kits are available for other types of viruses, too).

Figure 1.3: Screenshot of VBS virus/worm construction kit, taken from
[FSC2003]

1.1.4 Worms

The basic difference between a computer virus and a worm is: a worm does
not need a host ([RS1996, p. 4]). ”The computer Worm is a program
that is designed to copy itself from one computer to another, leveraging some
network medium: email, TCP/IP, etc.” ([CN1999, p. 1]). Worms may use

1.2 Anti-Virus Technologies 9

bugs, i.e. buffer overflows ([ECPZ2002]), in some server software to ”infect”
other machines via the Internet, e.g. MS SQL Server, MS Internet Information
Server ([ECPZ2002, pp. 86]) or in FTP daemons or the line printer daemon on
Linux/Unix systems ([JK2001, pp. 152]).

According to [CN1999, p. 2-3] Computer Worms can be classified based
on the transport and launch mechanism. The transport mechanism are eMail,
i.e. using MS Outlook to send itself as an email attachment or the worm may
have an SMTP module implemented to create and send mails on its own. A
worm may use arbitrary protocols like IRC (Internet Relay Chat), TCP/IP or
peer-to-peer networks. If a worm does not ”require user interaction in order to
gain control of a system” ([CN1999, p. 3]), it’s called ”self-launching worm”.
An ”user-launched” worm must be started by an user, e.g. double-clicking
on an infected email attachment. If a worm uses both mechanism, it’s called
”hybrid-launch worm”. Another classification approach was given by [TM2002,
p. 237-242]: he classifies worms by compiler and by method of replication. Most
worms are compiled with Visual Basic, C and Delphi. Method of replication
includes SMTP (worm creates mail on its own), MAPI (Message API), Outlook
or network (e.g. via network shares).

Of course, a worm may implement advanced features, as discussed above,
like retro capabilities or polymorphism4.

1.2 Anti-Virus Technologies

1.2.1 Scanner

Virus scanners are the far most used method to detect (and clean) a virus. It
may either work on-demand (i.e. the user has to start the virus scanner) or
on-access, which means the program runs in the background and scans a file
while it’s being accessed.

Modern virus scanners must be able to parse various file formats, e.g. dif-
ferent types of executables (i.e. DOS EXE-File, Windows NE/PE- Files), Of-
fice files or MIME-encoded files. And of course, self-extractor formats like
PkExe or the nowadays very common UPX and archive formats like RAR or
ZIP ([KC2002, page 3] [AM2002]). Therefore, an exact file type recognition
is needed. Some file types, e.g. images are not susceptible of viruses, so they
do not need to be scanned. Or depending on the file type, only certain areas
are scanned first; which is faster than doing always a dumb, full scan from the
beginning to the end of a file ([IM2000, p. 150]).

Several virus detection methods are possible, and which are used may de-
pend of the type of the virus and/or file type (see above):

Pattern matching: for each known virus, a particular sequence of code is
”extracted”, mostly called pattern, signature or search string, and stored
in a virus-definition file (some kind of database). Therefore, the virus
scanner ”is looking for an exact match which will identify the code as

4Polymorphism refers to the generated mails here also, e.g. random subject lines.

10 Introduction

a virus” ([KC2002, page 5]). To detect variants or minor modifications
of a virus, a search string may contain wildcards. Not only the search
string is stored, but also information which file types can by infected by
this particular virus and at which byte position/offset the search string
may occur. This is used to speed up the virus scan process ([IM2000,
p. 150]) and to avoid false positives5. Moreover, the virus definition file
may not only contain the virus signatures, but also some machine code
or some pseudo-code for performing various scanning tasks ([IM2000, p.
146]. For identifying a virus, more than one signature could be used; once
again, to reduce the likeliness of a false positive ([FF2001, p. 408]). An
exact identification is also important for cleaning a virus, otherwise it may
happen that the cleaning process removes not only the virus part(s). The
basic advantage of pattern matching is that the virus can be named (e.g.
”file infected with XYZ.A virus”), whereas heuristics (see below) may only
report ”file looks suspicious” back to the user. The basic disadvantage
obviously is that only known viruses can be detected, i.e. the signature
has been added to the virus definition file ([FF2001, p. 409]).

Heuristics: heuristics is used to ”detect” new viruses. Simply speaking, by
the heuristic approach a program is ”analysed” for instructions (or set of
instructions) which are known as typical for viruses. Each of such suspi-
cious instruction is given a special weight, which is summed up. If the
sum exceeds a particular threshold, the file is regarded as suspect of infec-
tion. Another approach is a rule-based system, which ”simply compares
found functionality with a set of rules. If a predefined rule is found within
the code, the rule-based system returns with a positive result. Depend-
ing on the exactness of the complete system, results like generic virus or
e.g. VBS/Loveletter variant are realizable” ([MS2002]). ”There are two
different ways of applying heuristic rules: static and dynamic. The static
method checks the presence of suspicious code fragments (whether they
are executed or not). The dynamic method emulates the program and
checks which actions are really performed (that is simulation of a virus
execution in a virtual environment, frequently called a sandbox or an em-
ulator buffer)” ([IM2000, p. 146], [FF2001, p. 416-417]). Those methods
are sometimes also referred as ”passive” and ”active” approach ([RS2002,
p. 109]). Both can be combined, too ([FF2001, p. 417]). See also code
emulation, below.

Code emulation: code emulation was originally developed to detect polymor-
phic viruses ([FF2001, p. 419], [KC2002, p. 6]). So, if a program is being
scanned by the anti-virus program, this program is being executed in a
virtual environment (aka ”sandbox”). Therefore, ”when a scanner loads
a file infected by a polymorphic virus into this virtual computer, the virus
decryption routine executes and decrypts the encrypted virus body. This
exposes the virus body to the scanner, which can then search for signa-

5false positive = a file is reported as infected, although it is clean. False negative = a file
is reported as virus free, although it is not

1.3 Anti-Virus Strategy 11

tures in the virus body that precisely identify the virus strain” ([CN1996,
p. 5]). As mentioned above, code emulation is also used together with
heuristics. Of course, code emulation is slow ([FF2001, p. 420]). So, code
emulation should only be used when really needed ([IM2000, p. 150-151]).

1.2.2 Integrity Checker

An integrity checker basically generates a checksum for files, sectors (i.e boot
sector) and the macros, stored in e.g. an Office document (it would make no
sense to create a CRC for the whole Office file, obviously). The checksums are
being stored in a kind of database and later being compared. If a checksum
does not match, a file has been modified (which could be caused due to a virus
infection) . Obviously, when generating the checksum, it must be assured the
file is clean ([FF2001, p. 411-412], [AN1999]).

1.2.3 Behaviour Blocker

A behaviour blocker runs in the background and monitors the execution of
the currently running program(s) on the computer. If a program tries to do
a suspicious action (e.g. open a file and appending code or formatting hard
disc), this will be intercepted. The behaviour blocker may then terminated this
program or ask the user which action should be taken (e.g. allow, do not allow,
move program into quarantine) ([CN2002], [FF2001, p. 410-411]). But for most
users this decision is a ”tough choice” and behaviour blocking may generate a
high level of false positives ([FF2001, p. 411]), although some techniques are
possible to reduce the likelihood of false positives ([LL2001]).

1.3 Anti-Virus Strategy

Nowadays, a basic anti-virus strategy is a 3-tier approach:

• tier 1: the desktop,

• tier 2: file & print, email or web server(s),

• tier 3: the internet gateway, like mail gateways or web proxy servers.

A virus should be stopped as early as possible, before it can enter the net-
work (i.e. tier 3). According to [ICSA2002, p. 24-25] since 2000 more than
80% of the virus incidents have been caused by infected email attachments,
whereas diskettes as source of infection are next to nothing. Of course, en-
crypted emails / attachments can not be checked at this level (this has to be
done by an on-access scanner running on the desktop). Virus scanning requires
lots of resources, so this task should probably be off-loaded onto another ma-
chine. Anti-virus software on the gateway must take precautions to not suffer
from a Denial-of-Service (DoS) attack by special crafted mails and/or mail at-
tachments (e.g. the (in)famous 42.zip attack6).

6see http://www.corpit.ru/pipermail/avcheck/2001q3/000110.html for a discussion on
the avcheck and amavis-user mailing list

12 Introduction

As files, esp. documents are shared via file server(s), those are a vector
for distributing infected documents (some viruses/worms use network shares to
propagate itself). Therefore, on-access scanning of file servers is the next line
of defense (tier 2).

The last resort is the desktop, e.g. for scanning an encrypted file when it’s
being decrypted.

A full anti-virus strategy is beyond the scope of this paper. Of course,
a good backup/restore concept and user education plays an important role in
such a concept. Only with a backup, erased data (caused by accident, hardware
failure or the payload of a virus) can be restored. User education should help
to minimize the number of people who double-click on any email attachment.
To reduce the risk of virus infection (and propagation), you may choose ”safe”
file formats (e.g. plain ascii text or PDF7 instead of Word), ”safe” applications
(e.g. PegasusMail instead of Outlook or OpenOffice instead of MS Office) or
Linux/FreeBSD instead of Windows. But, of course, changing software/OS
may not be an easy task.

7PostScript/PDF viruses are possible and some ”proof-of-concept” viruses exist. So, the
PS/PDF reader must not execute malicious instructions.

Chapter 2

Server-based Virus Protection
on Unix/Linux

This chapter outlines the requirements, possible means to integrate 3rd party
virus scanners and whether those requirements are full-filled or not.

2.1 Requirements & Aims

As the title already implies, the thesis is focused on server-based anti-virus
solutions running on Unix/Linux servers, i.e. protection for Internet gateways
(tier 3) and file servers (tier 2) to mainly protect Windows clients within the
internal network. So, we will discuss Open Source solutions for Linux/Unix
serves acting as

• Mail servers, running sendmail or postfix (chapter 4, p. 49). This topic
will be covered shortly, as many solutions exist (e.g. AMaViS, qmail-
scanner, exiscan, MailScanner) and some of them for many years (the
AMaViS project was started back in 1997).

• File and print servers, running Samba (chapter 5, p. 55). Not many solu-
tions are available until now; some features and implementation details of
samba-vscan will be discussed, which up-to-now is the only Open Source
solution supporting several anti-virus products.

• Proxy server running Squid (chapter 6, p. 71) . Again, OSS solutions are
rare. Three concepts by example will be presented shortly.

As those OSS solutions are not anti-virus products per se, but acting as
”clue code” between the service and one (or more) virus scanners, how the
integration can be done will be discussed first. The following requirements
should be fulfilled:

• easy integration, e.g. into shell or Perl scripts

• open, non-proprietary protocol, to be independent from anti-virus ven-
dor(s)

14 Server-based Virus Protection on Unix/Linux

• low implementation and maintenance efforts, to reduce costs

• load balancing / load separation, to not suffer from resources loss which
slows down the main service (e.g. mail server)

• high performance, to reduce latency caused by the virus scan process in
whole

2.2 Integration of Anti-Virus Products

Several means to integrate an anti-virus product into any 3rd party application
exist. Each has it’s pros and cons, some can be implemented very easily, others
are more time consuming.

2.2.1 Command line Scanner

A command line scanner can be used on demand to scan a specific directory or
the whole disk. Or via a cron job, calling a specific script, for a scheduled scan,
e.g. every day at 12pm.

Depending on the return value (or exit status) of the called program it’s
possible to determine whether an infection was found or not. As an example,
the list of return codes (shortened) for H+BEDV AntiVir/Linux (as of version
2.07):
0: Normal program termination, nothing found, no error
1: Found infected file or boot sector
2: A signature was found in memory

Calling a virus scanner is possible from any (shell) script, e.g.

#! /bin/sh
/usr/sbin/antvir /path/to/check
ret=$?
if [$ret -eq 0] ; then
echo "No virus found"
elif [$ret -eq 1] ; then
echo "Virus found"
else
echo "An error occurred"

Checking only for the return code has one major drawback - you can’t get the
virus name(s). Of course, grepping the output is possible, like in the Perl exam-
ple below, taken from the hbedv module1 of the AMaViS project2 (simplified).

[..]
chop($output = ‘$antivir -allfiles -noboot -s -z $TEMPDIR/parts‘);

1full source at http://cvsweb.amavis.org/amavis/amavis/av/hbedv
2A Mail Virus Scanner, http://www.amavis.org/ – Perl script for virus scanning at the

email gateway level.

2.2 Integration of Anti-Virus Products 15

$errval = retcode($?);
do_log(2,$output);
if ($errval == 0) { # no errors, no viruses found

$scanner_errors = 0;
} elsif ($errval == 1) { # no errors, viruses discovered

$scanner_errors = 0;
if ($output =~ /ALERT:/) {

@virusname = ($output =~ /ALERT: \[(\S+)\s.*?\]/g);
}

}
[..]

The basic format is ”ALERT: [<name> <type>] some text”, whereas <name>
is the name of the virus and <type> e.g. virus or dialer. But those types are
subject to change3.

So, are the requirements fulfilled?

✔ easy integration (partly), at least if used in scripts. Calling a command
line scanner using exec(2) family in a C program may not always be
possible (e.g. in the samba-vscan case).

✔ the implementation and maintenance efforts are in general low. Only in-
formation about the command line switches, the return values and the
output being matched is needed. From the authors experience as the
unofficial AMaViS av-subsystem maintainer: once in a while, it may hap-
pen anti-virus vendors change return values or the output without prior
notice.

✘ no open ”protocol”, each anti-virus product has it’s own set of return
values and output. Switching vendor means changing existing scripts.

✘ load balancing / separation is not possible. The virus scanning task has
to be done on the same machine as the service is running and could not
offloaded to another machine.

✘ performance is low. The program start needs time, i.e. creating the pro-
gram executing environment, self-check, loading the anti-virus database.

2.2.2 Application Programming Interface

An application programming interface (API) allows a 3rd party developer to
integrate a virus scanning facility in his program(s). Many anti-virus products
offer such an API, like the one(s) from Sophos, Trend Micro, H+BEDV or Net-
work Associates. But for most (nearly all) products, details about the API is
not freely available, i.e. only after signing a Non-Disclosure-Agreement (NDA).
To my knowledge, the only vendor which provides a complete documentation
of its API is Sophos Plc, which is called SAVI (Sophos AntiVirus Interface)

3based on an email from John Ogness of H+BEDV Datentechnik GmbH, Germany.

16 Server-based Virus Protection on Unix/Linux

([SAVI, page 13]): ”SAVI consists of a set of interfaces and enumerators that
provide access to various objects which are used internally by SAVI. [..]

The interfaces are retrieved:

• By querying the class factory, or

• By allowing COM to supply them automatically (only when using C++
syntax), or

• From the SAVI interface itself.

The interfaces can be used with C++ syntax or C syntax.”
SAVI provides various functions, e.g. Initialise for initialising an SAVI

object, SweepFile to scan a single file for viruses or DesinfectFile for attempt
to disinfect a file ([SAVI, page 63]). For illustration, a sample code on how to
initialise SAVI using the C programming language ([SAVI, page 19-20]):

CISavi2* pSAVI;
CISweepClassFactory2*
pFactory; HRESULT hr;
const char* ClientName = "SAVIDemo";

/*
* Load the SAVI DLL and then request a class factory
* interface.
*/
hr=DllGetClassObject((REFIID)&SOPHOS_CLSID_SAVI2,

(REFIID)&SOPHOS_IID_CLASSFACTORY2,
(void **)&pFactory);

if(hr==SOPHOS_S_OK)
{

/*
* Ask the class factory for a CSAVI2 interface.
*/
hr=pFactory->pVtbl->CreateInstance(pFactory, NULL, &SOPHOS_IID_SAVI2,

(void**)&pSAVI);
/*
* Drop the factory immediately, we don t need it
* again in this example.

*/
pFactory->pVtbl->Release(pFactory);
/*
* Did we get the CSAVI2 interface we requested?

*/
if(hr==SOPHOS_S_OK)
{

/*
* Ask SAVI to initialise itself.

2.2 Integration of Anti-Virus Products 17

*/
hr=pSAVI->pVtbl->InitialiseWithMoniker(pSAVI, ClientName);
/*
* If the initialisation failed, then release the
* SAVI interface and
* set the pointer to NULL.
*/
if(SOPHOS_FAILED(hr))
{

printf("ERROR: Initialise [%ld].", (long)hr);
pSAVI->pVtbl->Release(pSAVI);
pSAVI = NULL;

}
}

}

Now, let’s have a look whether the requirements are meet or not.

✔ good performance, as only the library has to be imported once and can
then be used. Loading library is faster than starting a program.

✘ easy integration is not possible, e.g. it can not be used in scripts

✘ each anti-virus vendor has it’s proprietary API. So, changing the anti-
virus vendor means rewrite from scratch.

✘ high implementation efforts. Needed to get in touch with API, efforts
depend on the complexity of the API and on API documentation. If API
is stable, changes are rather unlikely so maintenance efforts should be
rather small, assumed the API has not been completely redesigned.

✘ load balancing / splitting not possible, as the library can only be called
if it’s installed on the same host on which the service being protected is
run.

2.2.3 Client-server Communication

Using a command line scanner has once again a major drawback: speed. Even
if the OS/filesystem provides a good caching mechanism, the start takes some
time. This can be avoided when the program is run as a daemon. ”Daemons
are processes that live for a long time. They are often started when the system
is bootstrapped and terminate only when the system is shutdown. We say they
run in the background, because they don’t have a controlling terminal. Unix sys-
tems have numerous daemons that perform day-to-day activities” ([WRS1992,
page 415]). So, the anti-virus daemons has to load the virus signature database
only once on start-up, and not for each scan.

As an example, using Sophie (a daemon, using SAVI) with AMaViS the
speed-up is about 2.5x compared the command line scanner Sophos Sweep:

18 Server-based Virus Protection on Unix/Linux

”Based on the average delay times (as logged by postfix for the vscan trans-
port4), I am experiencing a roughly 2.5x speed-up in mail processing compared
to Sophos sweep. This is on a real life, production mail server, not some fancy
benchmark, and it’s the first time ever I have seen log entries with ’relay=vscan,
delay=0’ :-)”[LH2001].

We refer to the daemon, as it provides a virus scanning service, as a server,
which waits for requests from (any) program. Such a program is called client,
as it sends a request to the server to scan a file or directory.

Client and server communicate via (BSD) sockets, either Unix Domain sock-
ets or TCP sockets. By using Unix Domain sockets, communication is limited
to the host, i.e. client and server have to run on the same host.

The used protocol (for communication) could be either a ”proprietary” or
standardised one (e.g. the Content Vectoring Protocol or Internet Content
Adaption Protocol), which will be discussed in the following to sections.

2.2.3.1 Proprietary Protocols

Currently, most anti-virus products running as daemon use a ”proprietary”
protocol. samba-vscan (chapter 5, page 55), a program for on-access virus
scanning with the Samba file server, supports seven anti-virus products, which
means five different communication protocols (one pair use the same protocol).
On the one hand, this means some work for each virus scanner, but on the other
hand most of those protocols are easy to implement.

The protocol for the OpenAntiVirus Scanner daemon is very simply and
straightforward. It waits on port 8127 for a connection and expects e.g. the
”SCAN filename|path” command5. The response may either ”OK” (file is
clean), ”FOUND virus-name” or ”ERROR: error message”. The connection is
then closed by the server. For illustration, a simple telnet session to scan the
file eicar.com, which contains the EICAR6 Test File7 virus (not a real virus).

$ telnet localhost 8127
Connected to localhost.
Escape character is ’^]’.
SCAN /tmp/eicar.com
FOUND: Eicar-Test-Signature
Connection closed by foreign host.

Some products, ”re-use” existing protocols for their own purpose, e.g. F-Prot
Daemon uses the Hyper Text Transfer Protocol (HTTP) 1.0, as specified in
RFC1945 [RFC1945]. The F-Prot Daemon binds on port 10200 (up to 10204).
F-Prot Daemon supports only the GET method to send the name of the file
to be scanned. The request is therefore more simple than the one specified in
RFC1945 [RFC1945, chapter 5]:

4the vscan transport is the one calling AMaViS
5other methods are POST and FILTER
6European Institute for Computer Antivirus Research, http://www.eicar.org
7available at http://www.eicar.org/anti_virus_test_file.htm

2.2 Integration of Anti-Virus Products 19

Request = Request-Line
CLRF

The Request-Line is simplified, too:

Request-Line = Method SP Request-URI SP HTTP-Version CLRF

Method = GET

Request-URI = abs_path

whereas abs path is an absolute file name here. RFC1945 [RFC1945, section
5.1.2] mentions: ”The Request-URI is transmitted as an encoded string, where
some characters may be escaped using the ”% HEX HEX” encoding defined by
RFC 1738. The origin server must decode the Request-URI in order to properly
interpret the request.” Of course, this applies here, too.

The response send back by the daemon complies to RFC1945 [RFC1945,
section 4.1] ”Full Response” definition. The ”entity body” is XML8 output, as
demonstrated by the following simple telnet session:

$ telnet localhost 10200
Connected to localhost.
Escape character is ’^]’.
GET /tmp/eicar.com HTTP/1.0

HTTP/1.0 200 Ok
Server: fprotd
Date: Fri, 10 Jan 2003 14:00:52 GMT
Content-Type: text/plain
Connection: close

<?xml version="1.0" encoding="ISO-8859-1">
<!DOCTYPE fprot-results PUBLIC "" "">
<fprot-results version="0.0" engine="3.11b">

<arguments>
<arg></arg>

</arguments>
<filename>/tmp/eicar.com</filename>
<detected type="malware">

<name>EICAR_Test_File</name>
<accuracy>8</accuracy>
<disinfectable>yes</disinfectable>

</detected>
<summary code="11">infected</summary>

</fprot-results>
Connection closed by foreign host.

Both protocols as shown as example here have at least one drawback: they
accept a file name only (ScannerDaemon accepts pathname, too). So, they must

8Extensible Markup Language, see http://www.w3.org/XML/

20 Server-based Virus Protection on Unix/Linux

run on the same host as the client. Therefore, load separation is not possible
(i.e. running an Mail Transfer Agent on host X and the virus scanning facility
on host Y).

Once again, are the requirements fulfilled?

✔ easy integration, mostly yes, as most protocols are simple and may even
used within scripts (e.g. with tools like netcat/nc).

✔ the implementation and maintenance efforts are relatively low, as the
protocols are simple or existing code can be re-used (e.g. XML libs for
parsing XML output).

✔ good performance, as forking a child is faster than creating a complete
program context. Self-check and loading virus database must be done
upon startup of the daemon only.

✘ although the protocol is open (e.g. derived from HTTP), they are still
proprietary, as each anti-virus program uses its own protocol. Switching
vendor means re-write of the client

✘ load balancing / load separation can not be done with very simple proto-
cols, which only accept the file name (and not the file contents).

2.2.3.2 Generalized Frameworks

All mentioned techniques so far have two (major) drawbacks.

• Each anti-virus product has it’s own set of return codes, or specific API
or communication protocol. This means a lot of work to develop and
maintain support for each anti-virus product if you are an 3party appli-
cation developer. So, e.g. the AMaViS program ships with more than 25
antivirus-specific modules9.

• In some environments it may be desired to have service separation on a
per host basis, i.e. running email server, proxy server and anti-virus server
each on an own host. This is only possible, when/if the complete data of
the file to be scanned is transfered via network. Of course, the network
bandwidth could be the bottle-neck then, but this could be avoided by
using more than one virus-scanning host (i.e. per subnet/LAN segment)
and load-balancing.

Probably the most well-know protocol, which isn’t ”flawed” with the issues
mentioned above, is the ”Content Vectoring Protocol” (CVP10) by Checkpoint
Software, only for use with their Firewall-1 product. The other one is the
Internet Content Adaption Protocol (ICAP), mainly developed by Network
Appliances Inc and Akamai Technologies. Of course, both are not limited to

9see http://cvsweb.amavis.org/amavis/amavis/av/
10please do not mix with the ”Certificate Validation Protocol”, abbreviated as CVP, too.

See http://www.ietf.org/internet-drafts/draft-ietf-pkix-cvp-01.txt

2.2 Integration of Anti-Virus Products 21

virus scanning at all; they provide a generalized framework for various kinds of
content inspection and modification.

CVP is part of Checkpoint’s OPSEC (Open Platform for Security), http://
www.opsec.com/. As taken from [CVP2002, page 2]: ”CVP (Content Vec-
toring Protocol) inspection is an integral component of VPN-1/FireWall-1 s
Content Security feature. It enables third-party Content Vectoring Servers to
examine all files transferred for various protocols and considerably reduces the
vulnerability of protected hosts. CVP configuration (which files to inspect,
how to handle the invalid files) is available for all resource definitions. All
VPN-1/FireWall-1 auditing tools are available for logging CVP inspection and
issuing alerts if necessary.” (see figure 2.1)

Figure 2.1: Connection invoking a Content Vectoring Server [CVP2002, page 2]

Figure 2.1 shows an FTP client, running on host ”Priscilla”, which is con-
nected to the FTP server on ”Elvis” via the firewalled gateway ”Graceland”.
We assume, the client tries to retrieve a file from the FTP server, therefore the
Firewall-1 Security Server invokes the Content Vectoring Server (on ”Opry”).
So, VPN-1/Firewall-1 sends the file to the CVP server. The latter one performs
a virus scan and may optionally send back the auto-cleaned file. Depending on
the policy setting, the Security Server allows or disallows the file transfer.

The data flow is illustrated in 2.2 [CVP2002, page 7].

1. Input flow – from the source of the connection to the CVP client

2. Server flow – from the CVP client to the CVP server

3. Client to destination – from the CVP client to the connection destination

4. Server to destination – from the CVP server to the connection destination
Destination flow is a combination of the client to destination and server
to destination flows

5. Source flow – from the CVP server to the source of the connection

22 Server-based Virus Protection on Unix/Linux

Figure 2.2: CVP data flows [CVP2002, page 6]

Actually, CVP is a somewhat complex protocol (at least when compared with
the ICAP protocol, as discussed below). Moreover, the SDK and documenta-
tion is written for developing a CVP server and not for a CVP client. As an
example the SDK ships with several example servers in C, an example client
is only available as a binary. But for our purpose, a client must be devel-
oped, not a server. So, the documentation/SDK is not that valuable. It seems,
it’s Checkpoint’s aim to not provide any information on how to write a client
[KA2001].

In contrast, the Internet Content Adaption Protocol (ICAP) is freely avail-
able, i.e. the technical documentation can be downloaded without prior reg-
istration. Moreover, the example server implementation is licensed under the
terms of the GNU Public License (GPL) 11, probably the most prominent and
most widely used12 Open Source/Free Software license. The ICAP protocol is
dissected in the next chapter.

11http://www.fsf.org/licenses/gpl.html
12see freshmeat.net license breakdown statistic, http://freshmeat.net/stats/license.

”freshmeat maintains the Web’s largest index of Unix and cross-platform software, themes
and related ’eye-candy’, and Palm OS software”, taken from http://freshmeat.net/about/

Chapter 3

ICAP

In this chapter, the ICAP protocol will be dissected, i.e. who introduced it?
What were the requirements? How does it work? At the end of this chapter,
the example ”icap-client” will be discussed, i.e. it’s usage and implementation.

3.1 Overview

3.1.1 Introduction

ICAP was introduced by the so called ICAP forum back in 1999. The ICAP
forum is a coalition of Internet businesses and was co-founded (and still co-
chaired) by Network Appliances and Akamai Technologies. The requirements
to be full-filled are [ICAP01, page 2]:

• ”Be simple.

• Be scalable.

• Use existing infrastructure.

• Be modular in its service. That is, services must be able to be added
and subtracted without affecting the intervening architecture or its per-
formance.

• Use existing communication methods and standards.

• Provide resource savings by leveraging edge services.”

In short, ”ICAP in its most basic form is a ’lightweight’ HTTP based remote
procedure call protocol. In other words, ICAP allows its clients to pass HTTP
based (HTML) messages (Content) to ICAP servers for adaptation. Adaptation
refers to performing the particular value added service (content manipulation)
for the associated client request/response.” [ICAP01, page 2]

The benefits of ICAP are [ICAP01, page 3]:

• ”ICAP leverages existing equipment available today. In fact, if NetCache
(a proxy appliance) proxies are already installed, then no new equipment
is necessary, with the exception of the ICAP servers.

24 ICAP

Figure 3.1: Request Modification [ICAP01, page 7]

Figure 3.2: Request Satisfication [ICAP01, page 7]

• ICAP is HTTP based, enabling access through security barriers that only
allow port 80 traffic. Therefore, no security changes to the existing net-
work are likely.

• ICAP is an open protocol and allows any server or application provider
to implement it. ICAP is easy to implement since it leverages Apache
code. ISPs and enterprises can then choose the appropriate value-added
application provider.

• ICAP can also collect client interest information for use in targeting more
focused advertising toward these individuals.

• ICAP off-loads these value-added services to ICAP servers, freeing up the
resources of the Web servers. This reduces the access times on these sites.

• ICAP simplifies the implementation, reliability, and scalability of value-
added services. ICAP leverages edge device and infrastructure to deliver
edge-based value-added services that require content adaptation.”

3.1 Overview 25

Services to be implemented by using ICAP are [ICAP01, page 4-6]:

• ”Virus scanning”. Virus scanning can be performed ”on-the-fly”. If used
for scanning Web traffic, only new traffic will be scanned. Previously
scanned content, ”marked” as virus free, can be cached by any web cache
(like Squid), which improves performance.

• ”Markup Language Translation.

• Advertising Insertion

• Human Language Translation.

• Content Filtering

• Data Compression”

3.1.2 Architecture

ICAP basically offers four operations: two for modifications of an HTTP request
(header), and two for HTTP response (body).

Figure 3.3: Response Modification [ICAP01, page 8]

Via the Request Modification method the request issued by a client may
be modified by an ICAP server before the request will eventually fulfilled by the
origin server (see figure 3.1). Let’s assume, the client wants to visit the banned-
host.com web site, so the browser sends an HTTP GET request, which will be
redirected to ICAP server by the ICAP ”switch box”. As the site ”banned-
host.com” is in the list of banned URLs, the GET request will be rewritten to
retrieve an error message (stored on the proxy server). As another example, the
ICAP server could ”filter out” sensitive data from the HTTP (GET) request
before it will be sent back to the proxy, which will then send this request to ”the
outside world”. Request Satisfication (see figure 3.2) works quite similar, but
the (probably) modified request is sent directly to the origin server by the ICAP

26 ICAP

server (and not send back to the proxy server) and also the response by the
origin server will be sent back via the ICAP server.

Figure 3.4: Result Modification [ICAP01, page 8]

The Response Modification (see figure 3.3) and Result Modification
(see figure 3.4) are very similar. Here, the request of a client is answered
by the origin server and the response is then directed to the ICAP server for
modification (if any).

Service Request
Modification

Request
Satisfaction

Response
Modification

Result
Modification

Content
Filtering

Yes Yes Yes Yes

Gateway
Translation

Yes Yes

Language
Translation

Yes Yes Yes

Virus
Scanning

Yes

Ad
Insertion

Yes Yes Yes Yes

Data
Compression

Yes Yes

Table 3.1: Service Architecture Summary [ICAP01, page 9]

3.1 Overview 27

Product Windows Solaris Linux
Symantec AntiVirus Scan Engine Yes Yes Yes
WebWasher (NAI/CAI Engine) Yes Yes Yes
Finjan SurfinGate for Web Yes Yes No
TrendMicro InterScan WebProtect for ICAP No Yes No

Table 3.2: Available ICAP AntiVirus Servers

3.1.3 ICAP-enabled Anti-Virus Solutions

For this thesis, the Symantec AntiVirus Scan Engine and WebWasher CSM
(with the virus scan engine from Network Associates/McAfee) have been used.
Table 3.2 shows currently available ICAP AntiVirus Servers.

3.1.3.1 Symantec AntiVirus Scan Engine

Figure 3.5: Web-frotend of Symantec AntiVirus Scan Engine

The Symantec AntiVirus Scan Engine (SAVSE) 4.x1 was the first ICAP en-
abled anti-virus solution I received from an anti-virus vendor, which really had

1see http://enterprisesecurity.symantec.com/products/products.cfm?ProductID=

173&EID=0

28 ICAP

a working ICAP support2. So, most testing and development of the ICAP client
has been done using SAVSE. According to [SAVSE02, p. 14], ”the Symantec
AntiVirus Scan Engine provides virus scanning and repair capabilities to any
application on an IP network, regardless of platform, using one of three pro-
tocols. Any application can pass files to the Symantec AntiVirus Scan Engine
for scanning, which in turn scans the files for viruses and returns a cleaned
file if necessary”. A scan request can be send via SAVSE’s own native proto-
col, Internet Content Adaption Protocol (ICAP) and Remote Procedure Call
(RPC)3 ([SAVSE02, p. 15]). While it’s not possible to mention all features and
configuration settings, I’d like to point out the following settings:

• ICAP scan policy allows you to configure the action taken by SAVE, i.e.
file is only scanned, scan and delete or scan and repair ([SAVSE02, p. 62])

• In-memory file limits, as SAVSE has it’s own in-memory file system used
for decomposing and scanning for container and archive files, which is
faster than on-disk scanning ([SAVSE02, p. 74]).

• Limits for container files (e.g. archive file), i.e. maximum file size, maxi-
mum number of nested archive and maximum amount of time for decom-
posing ([SAVSE02, p. 87]).

As already mentioned, SAVSE may use the so-called native protocol, which
”is a request/reply-based protocol. The protocol version, the request, and the
file are all transmitted by the client upon connection with the scan engine. The
reply consists of a reply code, scan results, and the file if the file has been
modified” ([SSS02, p. 72]). The basic syntax of a client request is:

Version 2<CRLF>
<socket-command><CRLF>
<filename><CRLF>
<filesize><CRLF>
<filesize-bytes-of-data>

And for the server response:

Reply-Code<CRLF>
<scan-results>
<receive-file>

3.1.3.2 WebWasher Content Security Management (CSM) Suite

The WebWasher (WW) Content Security Management (CSM) Suite provides
the most features of the WebWasher product family4: Internet Access Man-
agement, Internet Content Filtering, E-Mail Filtering and Reporting. Spam

2the previous version had broken ICAP support. And I missed the fact, WebWasher offers
anti-virus capabilities via third party anti-virus modules.

3proprietary implementation
4see http://www.webwasher.com/enterprise/products/webwasher_products/index.

html?lang=de_EN

3.2 Technical Specification 29

Figure 3.6: Web-frontend of Web Washer CSM Suite

Filtering and Virus Scanning are optional. I used the WW CSM suite with the
Network Associates/McAfee virus engine. WW acts itself as ICAP server, but
also as ICAP client (e.g. the Internet Content Filtering module can be config-
ured to not use the internal WW-ICAP server but an external one). Moreover,
WW CSM can be used with Squid, but provides an own HTTP proxy, too
(without caching capabilities).

3.2 Technical Specification

3.2.1 Overview

The ICAP protocol is specified in RFC3507, published in April 2003 as an
informational memo. We will discuss relevant information for performing AV
scanning tasks only. For full details please refer to RFC3507 and related RFCs,
esp. RFC 2119 (keywords used in RFCs) and RFC 2616 (HTTP/1.1).

Actually, RFC3507 only mentions the OPTIONS (querying features of the
ICAP server), REQMOD (Request Modification) and RESPMOD (Response
Modification) methods. Request Satisfication and Result Modification, as named
in 3.1.2 (page 25), are not specified. As only the RESPMOD method will be
used for virus scanning, we will confine on this method to the essentials. The
abstract of [RFC3507] gives the outline of the ICAP protocol:

30 ICAP

”ICAP, the Internet Content Adaption Protocol, is a protocol aimed at
providing simple object-based content vectoring for HTTP services. ICAP is,
in essence, a lightweight protocol for executing a ’remote procedure call’ on
HTTP messages. It allows ICAP clients to pass HTTP messages to ICAP
servers for some sort of transformation or other processing (’adaptation’). The
server executes its transformation service on messages and sends back responses
to the client, usually with modified messages. Typically, the adapted messages
are either HTTP requests or HTTP responses.”

Although ICAP has several similarities to HTTP (semantics and usage),
ICAP is neither HTTP ”nor is it an application protocol that runs over HTTP
[..] The default port is 1344, but others may be used” ([RFC3507]). An ICAP
request is an ICAP message sent from the client to the ICAP server, an ICAP
response is an ICAP message sent from ICAP server to client. An ICAP mes-
sage consists of an ICAP header and maybe an ICAP body, which contains
an encapsulated HTTP message. In our case, the HTTP message contains
the HTTP request and HTTP response. As we use ICAP not only for HTTP
purposes, our ICAP client must create ”forged” HTTP request and HTTP re-
sponse. ICAP messages conform to the generic message format as of RFC 2822
([RFC3507, section 4.1]).

Details will be explained by an example ICAP request and an example ICAP
response5.

3.2.2 ICAP request

In the following request, the file /tmp/test.txt should be scanned by an ICAP
anti-virus server. The file test.txt contains only the line ”TEST TEST TEST”
(without the line terminator \n !). Line numbers in front have been added to
explain things more easily.

01: RESPMOD icap://localhost/avscan ICAP/1.0
02: Host: localhost
03: Encapsulated: req-hdr=0, res-hdr=30, res-body=109
04:
05: GET /tmp/test.txt HTTP/1.1
06:
07: HTTP/1.1 200 OK
08: Content-Type: application/octet-stream
09: Content-Length: 14
10:
11: e
12: TEST TEST TEST
13: 0
14:

Line 01 to 14 shows the complete ICAP request message, which consists of
the ICAP header (01-03) and the ICAP body (05-14). Line 04 is empty (i.e., a

5these are ”real-life” examples, created using the sample ICAP client, which will be dis-
cussed in 3.3 on page 35

3.2 Technical Specification 31

line with nothing preceding the CRLF), indicating the end of the ICAP header.
The header starts with a request line (01), which contains the method (here

RESPMOD), the URI of then ICAP resource, and an ICAP version string
([RFC3507, section 4.3.2]). The ICAP URI is specified as

ICAP_URI = Scheme ":" Net_Path ["?" Query]
Scheme = "icap"
Net_Path = "//" Authority [Abs_Path]
Authority = [userinfo "@"] host [":" port]

The request line is followed by two more headers (02-03). The ”Host” header
is required ([RFC3507, 4.3.2]). The ”Encapsulated” header is a must for every
ICAP message ([RFC3507, 4.4.1]), and will be explained later.

The ICAP body contains encapsulated HTTP message: ”The ICAP encap-
sulation model is a lightweight means of packaging any number of HTTP mes-
sage sections into an encapsulating ICAP message- body, in order to allow the
vectoring of requests, responses, and request/response pairs to an ICAP server.
[..] Encapsulated bodies MUST be transferred using the ’chunked’ transfer-
coding described in Section 3.6.1 of [4]” ([RFC3507, 4.4]). Before we discuss
the ICAP body, here the syntax for chunked transfer encoding ([RFC2616,
3.6.1])6:

Chunked-Body = *chunk
last-chunk
trailer
CRLF

chunk = chunk-size CRLF
chunk-data CRLF

chunk-size = 1*HEX
last-chunk = 1*("0") CRLF

chunk-data = chunk-size(OCTET)
trailer = *(entity-header CRLF)

So, the ICAP body consists of the following:

• HTTP request header (line 05). Normally, that’s the request from a web
browser, in our case, the developed ICAP client creates a ”forged” one,

• empty line (06), indicating end of HTTP request,

• HTTP response header (07-09). Again, forged by our client,

• empty line (10), indicating end of HTTP response header,

• the chunk size (line 11) as of [RFC2616, 3.6.1], which is a string of hex
digits. The chunk size is here the same as the value specified in Context-
Length of HTTP request,

6without chunk-extension

32 ICAP

• the data (chunk-data), to be scanned (here the content of file test.txt)
(line 12)

• the empty, last chunk, simply ”0” (of course, followed by CRLF),

• empty line (CRLF) as of the Chunked-Body definition of [RFC2616, 3.6.1]
(line 13).

As we’ve seen how encapsulating is done, let’s get back to the ”Encapsu-
lated” header. It indicates an ICAP message that encapsulates a request header,
a group of response headers, and then a response body. ”The byte-offsets are in
decimal notation for consistency with HTTP’s Content-Length header [..] The
order in which the encapsulated parts appear in the encapsulating message-
body MUST be the same as the order in which the parts are named in the
Encapsulated header.” ([RFC3507, 4.4.1])7.

Basically, an ICAP client, which is used for scanning file on disk, must do
the following steps before any data can be sent to the ICAP server.

• determine the file size,

• use this value for the ”chunk-size” and ”Content-Length” line,

• create ”faked” HTTP response header,

• create ”faked” HTTP request header,

• calculate size of HTTP request and response header,

• use those values for the Encapsulated header line,

• create ICAP request header.

3.2.3 ICAP response

An ICAP response could be

• ”an error indication

• an encapsulated and potentially modified HTTP response header and re-
sponse body

• an HTTP response 204 indicating that the ICAP client’s request requires
no adaptation” ([RFC3507, 4.9.2]).

The ICAP response ”must start with an ICAP status line, similar in form to
that used by HTTP, including the ICAP version and a status code” ([RFC3507,
4.3.3]). ICAP error codes, which differs from the HTTP counterparts are e.g:

7keep in mind, the byte-offset starts, of course, as position zero. And CLRF have to be
taken into account.

3.2 Technical Specification 33

204 - No modifications needed
400 - Bad request
404 - ICAP Service not found

Here’s an example response to the above discussed request:

01: ICAP/1.0 200 OK
02: ISTag: "1052324700"
03: Encapsulated: res-hdr=0, res-body=127
04:
05: HTTP/1.1 200 OK
06: Content-Type: application/octet-stream
07: Content-Length: 14
08: Via: 1.1 Symantec AntiVirus Scan Engine (ICAP)
09:
10: e
11: TEST TEST TEST
12: 0
13:

Line 01-13 is the complete ICAP response message, which consists of the
ICAP header message (01-03) and an encapsulated HTTP response header (05-
08) and the chunked data (10-13) (the response body).

3.2.4 Performance Consideration

The following three means should be considered to improve performance.
As seen in 3.2.3, the ICAP server sends the complete data back, even if it

has not changed. When the client has cached the data, the data should not
be send back to improve performance. To achieve this, ”an ICAP client MAY
include ’Allow: 204’ in its request headers, indicating that the server MAY
reply to the message with a ’204 No Content’ response if the object does not
need modification” ([RFC3507, 4.6]). For illustration, here the example ICAP
response:

ICAP/1.0 204 No Content Necessary
ISTag: "1052324700"

Actually, the developed example ICAP client always sends the ”Allow: 204”
header. Furthermore, it expects an ICAP status code 204 when the content is
virus-free (which violates the RFC, but I consider this OK for an example
program).

For performance reasons, an ICAP client may cache ICAP responses (i.e. an
HTTP proxy like Squid). ICAP uses the ISTag (”ICAP Service Tag”) response-
header field, which could be considered as a ”cookie”. In the case of an anti-
virus ICAP service, ”the ISTag might be a combination of the virus scanner’s
software version and the release number of its virus signature database. When
the database is updated, the ISTag can be changed to invalidate all previous

34 ICAP

responses that had been certified as ’clean’ and cached with the old ISTag”
([RFC3507, 4.7]).

As explained in chapter 1, some file types do not need to be scanned. So, e.g.
it does not make sense to transfer a huge AVI file over the network. Therefore,
ICAP offers a method called ”message preview” ([RFC3507, 4.5]). The icap
client may send the first bytes of a file, the ICAP anti-virus server determines
the file type, and may then report back to the client to send the rest of the file
or no more data. It’s (currently) not possible to send more than one preview
request, i.e. the ICAP server can not response as ”the first 30 bytes was not
enough to detect file type, send me another 50 bytes” (see [FB2002] for details).

3.2.5 ICAP extensions

Normally, when ICAP is used for virus scanning of HTTP traffic, a virus noti-
fication is send back in HTML (”embedded” as HTTP response), which is then
simply displayed by the used browser. But for the purposes for which we re-use
the ICAP protocol, this would mean parsing the HTML response to get the
virus name(s). As every ICAP server is very likely using it’s own HTML file, a
generic parsing approach is not possible. Therefore, the developed ICAP client
uses header information which is sent by the Symantec AntiVirus engine, to
get the desired information. The following headers are used, which have been
specified officially later in the ICAP extensions draft ([MST2003]).

X-Infection-Found-Header = "X-Infection-Found: Type=" TypeID
"; Resolution=" ResolutionID
"; Threat=" ThreadDescription ";"

TypeID = 0 | 1 | 2
ResolutionID = 0 | 1 | 2
ThreadDescription = TEXT

The TypeID is

0 virus infection

1 mail policy violation

2 container violations (e.g. decompression time has reached a specified time
out)

ResolutionID is

0 file was not repaired

1 file was repaired

2 file should be blocked or rejected

ThreadDescription is a human-readable description of the threat, e.g. the
virus name ([MST2003, 4.6]).

The developed icap-client uses the X-Infection-Found header for retrieving
the virus name.

3.3 Example ICAP Client Implementation 35

The X-Virus-ID can be used as an alternative to X-Infection-Found
X-Virus-ID-Header = "X-Virus-ID:" OneLineUSTEXT
OneLineUSText = 1*(<any CHAR except CTLs>)

X-Violations-Found-Header = "X-Violations-Found:" count
1*(CR LF Filename CR LF ThreadDescription CR LF
ProblemID CR LF ResolutionID)

count = 1*DIGIT
Filename = TEXT
ThreadDescription = TEXT
ProblemID = 1*DIGIT
ResolutionID = 0 | 1 | 2

3.3 Example ICAP Client Implementation

For getting in touch with ICAP and especially in writing an ICAP client imple-
mentation for samba-vscan, the ”icap-client” utility has been developed. It’s
a very basic and simple ”proof-of-concept” implementation. It’s written in C,
to re-use some of the code later than for the samba-vscan package. It can be
used for demonstrating the ICAP protocol, as it can be instructed to show the
ICAP response generated by ”icap-client”, the response (if any) send back by
the ICAP server or both. Without any option (except for the file name), it
simply displays whether a file is infected by a virus or not. Of course, in case of
infection the virus name will be displayed, too. Therefore, ”icap-client” can be
use for scanning file(s) via an ICAP anti-virus scanning server. The program is,
of course, licensed under the terms of the GNU General Public License (GPL)
and comes with some source code documentation. For details about the im-
plementation please refer to the section ”Client Implementation Details”, 3.3.2
(page 37).

3.3.1 Usage of ”icap-client”

icap-client file [-scr|-ssr|-sboth|-v|-h]
Getting help

icap-client -h

$./icap-client -h
ICAP example client for use with Symantec AntiVirus Engine 4.x
(C) by Rainer Link, 2003, OpenAntiVirus.org, \
<rainer@openantivirus.org>

Usage:
./icap-client file [-scr|-ssr|-sboth|-v|-h]

Purpose:
This program is a sample ICAP client implementation

36 ICAP

which sends the specified file to an ICAP server
to be scanned for viruses

Options:
file the file to be scanned by ICAP server
-scr show client request
-ssr show server response
-sboth show client request and server response
-v verbose mode
-h prints this help screen

This software is licensed under the terms of the
GNU General Public License (GPL)

Here’s an example output when scanning the file eicar.com, which is in fact
the EICAR Test File virus file.

$./icap-client eicar.com -v
ICAP example client for use with Symantec AntiVirus Engine 4.x
(C) by Rainer Link, 2003, OpenAntiVirus.org, \
<rainer@openantivirus.org>

Open connection to ICAP server ...
Scanning file eicar.com ...
Sending headers to ICAP server ...
Sending file data to ICAP server ...
read data: 68
send data: 68
Retrieving response from ICAP server ...
Found ICAP response line ...
Scan result: File ’eicar.com’ is infected with virus \
’EICAR Test String’
Closing connection to ICAP server ...

The ”icap-client” program will connect only to an ICAP server running on
localhost, port 1344 (the default ICAP port). To change this, please adjust
/* port ICAP server listens on as specified

by ICAP protocol */
#define ICAP_PORT 1344
/* IP the ICAP server listens on */
#define ICAP_IP "127.0.0.1"

in the icap-client.c file and re-compile.
The program returns the following error values, so it can be used in shell

scripts et al.

0 - all OK

3.3 Example ICAP Client Implementation 37

1 - virus was found

2 - an error occurred

3.3.2 Client Implementation Details

As already mentioned, the ”icap-client” can be used to determine whether a
file is clean or infected, in the latter case the virus name is displayed. This
program has been (mostly) developed for the Symantec AntiVirus Engine, as
this product was the first ICAP server with anti-virus facility I received. To
work properly, the ICAP server must fit the following two conditions:

C1: the response must always consist only of the ICAP response
header

The ”icap-client” program sends the
Allow: 204

in the RESPMOD request. The server must respond with

ICAP/x.y 204 <text>
[more header lines]

if the file is clean (1).
In the case of an virus infection, the ICAP server must not response with

an ICAP body containing the cleaned file or a virus notification as HTML, but
instead with an ICAP header only as

ICAP/x.y 403 <text>
[more header lines]

Actually, only Symantec AntiVirus Engine supports that by setting

ICAPResponse=0
ICAPActionPolicy=SCAN

in the symcscan.cfg configuration file (2). This can not be done via the
ICAP protocol8. But this is too inflexible, as HTTP scanning requires to send
data back, i.e. with this setting SAVE can’t be used with squid-icap (which
will be discussed later). I would suggest to introduce a ”Allow: 403” line in the
RESPMOD request header similar to the ”Allow: 204” line.

C2: the ”X-Infection-Found” line must be sent back in case of virus
infection

In case of a virus infection, the ”ICAP/x.y 403” response header must
contain the following X-header line

X-Infection-Found: Type=ID1; Resolution=ID2; Threat=desc;

which is used to parse the virus name (3).

Let’s have a closer look at those design issues:
8to be precise, the ActionPolicy can be changed via ICAP request according to Rui Ataide,

i.e. ”RESPMOD icap://host/avscan?action=SCAN”

38 ICAP

(1) For speed reasons, we just do not need the same, unchanged data sent
back from the ICAP server

(2)+(3) ICAP was actually designed as ”a protocol aimed at providing sim-
ple object-based content vectoring for HTTP services” ([RFC3507]). For HTTP
purpose, you can simply send back the virus information as an HTML page
which is then displayed by the browser to inform the user. For other purposes,
you must parse the information, but as every ICAP server uses its own HTML
page/format, it’s somewhat difficult to parse. In short, there’s no generic way to
do it currently, and therefore the ”icap-client” has been designed as mentioned
above to work (at least) with the Symantec AntiVirus Engine.

So, how could a generic way to get the virus name(s) look like? Here are
three proposals

P1: ”X-Infection-Found” line as a must for ICAP servers with anti-virus facility
An ICAP server with anti-virus facility must support the ”X-Infection-

Found” line in the response (regardless whether an additional ICAP body with
an HTML virus notification page is sent or not). Moreover, it must be sent via
an ”ICAP/x.y 403” response9 (or, an extra 4xx status code must be defined for
this purpose). As normally the HTML virus notification page is send HTTP
encapsulated via an ”ICAP/x.y 200” header, the client must announce it sup-
ports the 403 status code within the request. This could simply be done via
sending the ”Allow: 403” line in the request.

P2: OPTIONS response must contain information how to retrieve the virus
name(s)

The OPTIONS method is used to retrieve configuration information. There-
fore, the OPTIONS response must contain information how to parse the virus
name from the RESPMOD response.

P3: XML data in encapsulated HTTP body of the RESPMOD response
The servers sends an encapsulated HTTP response back, by which the

HTTP body consists of XML data (instead of HTML). XML is used for struc-
tured information and can be easily parsed using some of the XML parsing
libraries. The client must announce it expects XML data via the ”X-XML-
DATA: yes” (or similar) line in the request. The XML definition has to be
specified in the ICAP protocol (or as extension).

Some more remarks on the implementation and drawbacks.

I1: It does not use Unix-I/O (i.e. read(2), write(2) function) but the
Standard-I/O library instead as specified in the ANSI C standard. Actually, it
opens an input and output stream on the opened socket (see [WRS2000, pp.
360]). It uses blocking I/O, which, simply speaking means that a process is
blocked until an I/O system call returns. For this small utility this was con-
sidered as acceptable, but it’s recommended to use other I/O techniques (e.g.
I/O multiplexing or even better asynchronous I/O) (see [WRS2000, pp. 139]).

9actually, 403 means ”forbidden” in HTTP/1.1, but here not the ICAP request itself was
forbidden, but the content. So, defining an extra 4xx status code would be better

3.4 Performance 39

I2: It does not use any timeouts, for e.g. closing the connection when
after 10 secs still no response from the ICAP server has been retrieved (see
[WRS2000, pp. 343] for details).

I3: The file to be scanned is read in via an 8 kB buffer, which can be
considered as a well-enough buffer.

I4: It doesn’t read in the whole answer from the server, but aborts until it
either has read enough to be able to recognize the file is clean (i.e. it aborts
just after the ”ICAP/x.y 204” line has been read) or file is infected and it has
also retrieved and parsed the virus name.

I5: For simplicity, the message preview technique is not implemented. So,
a file will always be transfered (completely), regardless if the file type of the
transfered file is suspectible of a virus infection. Of course, this is a performance
loss.

I6: The Content-Type in the ”faked” HTTP-repone is always set to
application/octet-stream, so the actual file type is ignored. Therefore, the ICAP
server must not trust this, but performing it’s own file type detection. Actually,
the file(1) utility can be used to determine the file type, but it does not provide
an API for own programs (executing file(1) and grepping the output is not a
real solution). The only C library currently known is FileType10 from Paul L
Daniels, but it’s far beyond the reliability of file(1).

3.4 Performance

3.4.1 Hardware

The following hardware has been used for performance tests.
Name: rlss
Type: Laptop
CPU: Mobile Pentium III (Coppermine), 1GHz, 1998.84 bogomips
Memory: 256 MB SD-RAM
Hard Disc: HITACHI DK23CA-20, 20GB, 2048 kB cache, UDMA2, 20 MB/sec
NIC (chip): RealTek RTL-8139C, 100 Mb/s
OS: SuSE Linux 8.1
Kernel: 2.4.19-4GB (SuSE)
Filesystem: ext3
Java: Java(TM) 2 Runtime Environment, Standard Edition (build 1.3.1 04-
b02) Java HotSpot(TM) Client VM (build 1.3.1 04-b02, mixed mode)

Name: rlss2
Type: Midi Tower
CPU: AMD Duron, 600 MHz, 1199.30 bogomips
Memory: 256 MB SD-RAM
Hard Disc: IBM IC35L060AVVA07-0, 60GB, 1863 kB Cache, UDMA3, 32
MB/sec
NIC (chip): DC21143, 100Mb/s

10http://www.pldaniels.com/filetype/

40 ICAP

OS: SuSE Linux 8.0
Kernel: 2.4.18-4GB (SuSE)
Filesystem: ext3
Java: Java(TM) 2 Runtime Environment, Standard Edition (build 1.3.0) Classic
VM (build 1.3.0, J2RE 1.3.0 IBM build cx130-20010626 (JIT enabled: jitc))

Name: rlss3
Type: Midi Tower
CPU: Pentium II (Klamath), 266 MHz, 532.48 bogomips
Memory: 192 MB SD-RAM
Hard Disc: IBM-DJNA-351520, 30 GB, 430 kB Cache, UDMA2, 15 MB/sec
NIC (chip): RealTek RTL-8029, 10Mb/s
OS: SuSE Linux 6.2
Kernel: 2.4.14
Filesystem: ext2
Note: this machine has only been used as web server for Squid tests

Connected with Cat-5 STP cable via W-LINX SW-008GC, 8 port 10/100Mb/s
N-way switching hub.

3.4.2 Results

First of all, those results shouldn’t be taken as absolute figures (i.e. if a program
X is 5sec faster than Y, this doesn’t count that much) but should give only some
impression about performance (or the performance loss). The performance
heavily depends on the speed of the scan engine. So, those results should be
taken with a pinch of salt.

The following two tests have been done

• AVI file with size 1 MB, 10 MB, 100 MB and 500 MB. As no virus
scanning is needed, the elapsed time for ICAP should be just the transfer
time

• Transfering 6695 ELF files (566 MB) and 2220 Office files (517 MB).
Those files are clean, the Office files did not contain any macros, as we
don’t want to time the scan engine.

All timings (elapsed real time between invocation and termination) have
been done via ”time(1)” command. Only the average time is shown here.

The tested programs and setups are outlined below. If possible, tests have
been done via loopback interface (127.0.0.1) on rlss and rlss2, rlss ➞ rlss2 and
rlss2 ➞ rlss via network (rlss ➞ rlss2 means: ICAP server running on host rlss2,
data is send from rlss to rlss2) .

- Symantec AntiVirus Engine (SAV), tested in ICAP mode and in NATIVE
mode (AVI file test). Office and ELF test only in ICAP mode. Data send
via the ”icap-client” utility (for the Office + ELF test the ”find(1L)” tool
has been used, too)

3.4 Performance 41

- WebWasher CSM (WW). Data send via the ”icap-client” utility (for the
Office + ELF test the ”find(1L)” tool has been used, too)

- for speed comparison, AVI file test has been done by copying the file.

- for speed comparison, AVI file test has been done with wget to retrieve
the file(s) from the other host. Note, not the request direction but the
data flow direction is mentioned in the table(s) and figures (i.e. rlss ➞

rlss2 means data, the HTTP response, send from rlss to rlss2)

Product/Task 1M (s) 10M (s) 100M (s) 500M (s)
SAVSE (ICAP, local, rlss) <1 <1 11 73
SAVSE (ICAP, local, rlss2) <1 <1 7 54
SAVSE (ICAP, rlss ➞ rlss2) <1 <1 13 71
SAVSE (ICAP, rlss2 ➞ rlss) <1 1 13 80
SAVSE (NATIVE, local, rlss) <1 <1 11 72
SAVSE (NATIVE, rlss ➞ rlss2) <1 1 13 70
SAVSE (NATIVE, local, rlss2) <1 <1 7 53
SAVSE (NATIVE, rlss2 ➞ rlss) <1 1 13 77
WW (local, rlss) <1 <1 11 80
WW (rlss ➞ rlss2) <1 1 15 73
WW (local, rlss2) <1 <1 11 55
WW (rlss2 ➞ rlss) <1 1 11 68
copy (local, rlss) <1 <1 12 77
copy (local, rlss2) <1 <1 7 45
wget (rlss ➞ rlss2) <1 1 15 80
wget (rlss2 ➞ rlss) <1 1 14 72

Table 3.3: Performance results for AVI file test

Figure 3.7 illustrates the results for host rlss using WebWasher. Copying
the 100MB/500 MB file took nearly the same time as sending the file via icap-
client to WebWasher, running on host rlss (localhost). But even the elapsed
time for sending it via icap-client to the remote host rlss2 (running WebWasher)
is basically the same. But that’s not really surprising as the hard disc of rlss is
not that fast and by the local test, the HD must perform reads/writes, by the
remote test only reads (the network throughput is around 6 MB/s). Of course,
the results for host rlss2 (figure 3.8) differ. The faster hard disc results in better
performance. And, the elapsed time of the local(host) tests are lower than for
the remote test (data send to rlss, on which WebWasher runs).

As on the AVI file no virus scanning is performed, the results for Symantec
AntiVirus Scan Engine are basically the same as for WebWasher (figure 3.9,
figure 3.10).

42 ICAP

Figure 3.7: Performance results AVI file test, WebWasher, host rlss

Figure 3.8: Performance results AVI file test, WebWasher, host rlss2

3.4 Performance 43

Figure 3.9: Performance results AVI file test, SAVSE, host rlss

Figure 3.10: Performance results AVI file test, SAVSE, host rlss2

44 ICAP

Product/Task ELF (m:s) Office (m:s)
SAVSE (local, rlss) 2:59 1:53
SAVSE (local, rlss2) 3:25 1:23
SAVSE (rlss -> rlss2) 4:08 1:51
SAVSE (rlss2 -> rlss) 3:29 1:51
WW (local, rlss) 3:57 3:38
WW (local, rlss2) 4:24 3:33
WW (rlss -> rlss2) 4:45 3:32
WW (rlss2 -> rlss) 4:43 4:15
NAI AV 1:28 1:04
NAI AV (via find)11 - 23:28

Table 3.4: Performance Results for ELF/Office files test

Figure 3.11: Performance results ELF/Office file test, SAVSE

As figure 3.11 for the Symantec AntiVirus Scan Engine illustrates, scanning
Office files is faster on rlss2 (fast hard disc) than on rlss (slow hard disc). On
the other hand, scanning ELF files is faster on rlss (faster CPU). Even sending
the ELF files from rlss2 to rlss and then scanning on rlss requires (nearly) the
same time as scanning locally on host rlss2. The slowest method for ELF files
is sending them from host rlss to rlss2 to perform virus scanning on host rlss2.

The results for WebWasher (see figure 3.12) are in some cases the same but
in some different. The elapsed time for the Office files test on host rlss and rlss2
are basically the same, so rlss2 is here not faster (as with SAVSE). Again, ELF
files are scanned the fastest locally on host rlss, the slowest method is to send
them from rlss to rlss2. But with WebWasher, sending ELF files from rlss2 to
rlss for scanning is slower than scanning locally on host rlss2.

3.4 Performance 45

Figure 3.12: Performance results ELF/Office file test, WebWasher

Figure 3.13: Performance results ELF/Office file test, NAI AV, WebWasher

46 ICAP

The last figure 3.13 illustrates a comparison of NAI AntiVirus/Linux (”uvs-
can”) and WebWasher (both use exactly the same engine and virus definition
.DAT files). Of course, the on-demand virus scanner ”uvscan” is faster when
called as ”uvscan –recursive /tmp/samba-test/office”, than transferring all the
files to WebWasher via ICAP, but much slower when called for each file via
”find /tmp/samba-test/office -type f -exec uvscan {} \;”.

3.5 Conclusion

On the one hand, most of the requirements (see 2.1) are meet:

✔ ICAP is an open protocol, it’s available for free as an RFC. Moreover,
some ICAP server and/or client implementations are licensed under a
Open Source/Free Software license, like the GNU Public License. Switch-
ing anti-virus vendors should be in most cases very easy, but the choice is
limited as the list of available products is very short. If ICAP is used in
a non-HTTP scenario, the ICAP client most likely needs some adaption
for parsing the virus name(s).

✔ the implementation efforts can be considered as quite OK, as the protocol
is not too complex. The maintenance efforts can not really estimated (see
below for details)

✔ load separation is possible, as well as load balancing (although it’s not
specified in the RFC itself)

✔ the performance should be quite fair for most cases

✘ easy integration (depends). Of course, a shell/perl script is able to an
external program, like the example ”icap-client”, but calling an external
program may be slow and gives the control to it. A Perl ICAP module
would be handy12.

But on the other hand, I would question the future of ICAP. The traffic on
the ICAP-discussion mailing list, to which I’m subscribed since the beginning
of this thesis, is very low13. The IETF is currently working on Open Plug-
gable Edge Services (OPES)14 which considers ICAP as an precursor: ” The
Open Pluggable Edge Services (OPES) working group is chartered to define
a framework and protocols to both authorize and invoke distributed applica-
tion services while maintaining the network’s robustness and end-to-end data
integrity. These services may be server-centric (i.e., an administrative domain
that includes the origin server) and they may be client-centric (i.e., an admin-
istrative domain that includes the user agent)” ([OPS03]). The virus scanning
scenario is mentioned in [ABA2002, section 3.2]. Currently, the IETF WG

12search.cpan.org will show some hits for the keyword ICAP, but those module implement
or use the Internet Calendaring Protocol

13see the monthly statistic at http://groups.yahoo.com/group/icap-discussions/
14http://www.ietf-opes.org/

3.5 Conclusion 47

is discussing the OPES call-out protocol (OCP), which supports the remote
execution of OPES services. As especially the OCP specification is incom-
plete, it’s currently not possible to estimate efforts for switching from ICAP to
OPES/OCP and how the migration path would look like.

48 ICAP

Chapter 4

Mailserver - AMaViS

This chapter will give a brief overview about the email scanning tool ”A Mail
Virus Scanner” (AMaViS), which can be used to integrate several virus scanners
into the four most common Mail Transfer Agents (MTA). How this can be done
is demonstrated with the MTA sendmail and postfix.

4.1 MTA-Integration

In this section, the AMaViS integration into sendmail and postfix will be dis-
cussed. Those concepts are of course valid for other tools as well and may used
for other purposes (i.e. general content filtering), too.

4.1.1 Sendmail

Basically, AMaViS can be integrated into sendmail via three ways:

• by replacing the settings for the local delivery agent (LDA)

• by using a dual sendmail setup with different sendmail configuration

• by using sendmails content filtering API

The first two methods ([RL2003]) are not recommended: the LDA method
can by design only scan incoming mails, the dual sendmail method is compli-
cated to set up. The last one is preferred, and will be outlined here.

The sendmail content filtering API, mostly referred as (lib)milter in-
terface, ”provides third-party programs to access mail messages as they are
being processed by the Mail Transfer Agent (MTA), allowing them to exam-
ine and modify message content and meta-information. [..] Filters can process
messages’ connection (IP) information, envelope protocol elements, message
headers, and/or message body contents, and modify a message’s recipients,
headers, and body.” ([SI2000]). Such filters run as separate processes for secu-
rity and stability reasons and communicate with the MTA via local or remote
connections, i.e. Unix domain or TCP sockets. ”The Milter library (libmilter)
implements the communication protocol. It accepts connections from various
MTAs, passes the relevant data to the filter through callbacks, then makes

50 Mailserver - AMaViS

appropriate responses based on return codes. A filter may also send data to
the MTA as a result of library calls.” ([SI2000]). Table 4.1 shows the milter
callbacks related to an SMTP transaction, Figure 4.1 illustrates how milter
works.

Figure 4.1: Sendmail: A filter handling simultaneous requests from two MTA’s
([SI2000])

SMTP commands Milter callbacks

(open SMTP connection) xxfi connect
HELO ... xxfi helo
MAIL FROM ... xxfi enfrom
RCPT TO ... xxfi envrcpt
DATA
header ... xxfi header

xxfi eoh
body ... xxfi body
. xxfi eom
QUIT xxfi close
(close SMTP connection)

Table 4.1: Milter callbacks related to SMTP transaction ([SI2000])

The communication between AMaViS and sendmail is done via a Unix Do-
main socket (on SuSE Linux this is /var/run/amavis/amavis-milter.sock). The
milter has to be started before sendmail, e.g. on SuSE Linux (that’s actually a
one-liner)

4.1 MTA-Integration 51

startproc -u vscan /usr/sbin/amavis-milter \
-p local:/var/run/amavis/amavis-milter.sock \
>/dev/null 2>&1 &

Of course, sendmail must be configured to use this filter. The following m41

code is used to set it up.
define(‘MILTER’)dnl
divert(-1)
INPUT_MAIL_FILTER(‘milter-amavis’, \
‘S=local:/var/run/amavis/amavis-milter.sock, \
T=S:10m;R:10m;E:10m’)
divert(0)dnl

This will result (shortened) to the following code in sendmail.cf
Input mail filters
O InputMailFilters=milter-amavis

Xmilter-amavis, \
S=local:/var/run/amavis/amavis-milter.sock, \
T=S:10m;R:10m;E:10m

4.1.2 Postfix

Postfix (sic!) Content Filtering mechanism differs from the sendmail one: ”A
Postfix content filter receives unfiltered mail from Postfix and either bounces
the mail or re-injects filtered mail back into Postfix” ([WV2003]). So, basically,
postfix sends the mail to be checked to a filter, either via pipe transport or via
LMTP/SMTP. The filter may than deliver back the mail either by piping it to
the sendmail wrapper program or sending it back via SMTP ([WV2003]).

Figure 4.2: Postfix: simple content filtering example, based upon [WV2003]
(simplified)

Figure 4.2 shows a simple content filtering example, by which mail is send
via the pipe transport to the filter and the filter pipes the mail eventually back
to the sendmail wrapper (in fact, postfix consists of several programs doing
specific tasks instead of the monolith original sendmail program).

1a macro processor, see http://www.gnu.org/software/m4/m4.html and http://www.

sendmail.org/m4/intro_m4.html

52 Mailserver - AMaViS

Figure 4.3: Postfix: advanced content filtering example, based upon [WV2003]
(simplified)

Figure 4.3 shows the so called advanced content filtering example. In this
case, mail is send via SMTP to port 10025, on which the filter listens on. The
mail may be delivered back to postfix via SMTP, listening on port 10026.

The AMaViS setup is actually a mixture of both: the mail is piped to the
AMaViS perl script, and AMaViS delivers the mail back via SMTP to postfix.

The following changes are therefore needed to the postfix configuration.
For /etc/postfix/main.cf:

content_filter = vscan:

For /etc/postfix/master.cf:
vscan unix - n n - 10 pipe \
user=amavis argv=/usr/sbin/amavis ${sender} ${recipient}

localhost:10025 inet n - n - - smtpd \
-o content_filter=

4.2 Features

As already mentioned, AMaViS supports the probably most-commonly used
Mail Transfer Agents and a wide range of anti-virus products (each virus scan-
ner has it’s own ”module” in the amavis/av subdirectory) . As not all of
them include MIME/UUENCODE support or are able to handle all those var-
ious compression formats, AMaViS is responsible for such tasks. So, basically,
AMaViS receives the complete mail from the MTA and stores it onto disk (e.g.
as /var/amavis/amavis-<uniquename>/email.txt). Now, this mail will be split-
ted into its parts, i.e. the mail itself and the attachment file(s) (if any), and
stored on disk (e.g. in directory /var/amavis-<uniquename>/parts/). For each
of those files, the file type will be detected2, and if it’s compressed/archived,
the corresponding decompression/unarchiving tool will be run. As last step, the
configured virus scanner(s) is/are called. Depending on e.g. the return value or
the output of the scanner AMaViS determines whether an email (attachment)
was infected or not. In case of an infection, the mail will be moved into quaran-
tine (and therefore delivery stopped) and, by default, a virus notification is sent
to the sender of the email message and the administrator of the mail server. To
add ICAP support to AMaViS, simply a new module has been created, which

2via the Unix-command file(1); not via the file extension, which is just too unreliable

4.3 Conclusion 53

simply calls the ”icap-client” utility to send the file(s) to the ICAP server for
scanning.

4.3 Conclusion

In the AMaViS case, ICAP is simply re-used for on-demand scanning files (as
mentioned above, AMaViS splits the mails in it’s parts and writes them to disk)
using the ”icap-client” utility. Therefore, no specific performance tests have
been run (please see 3.4.2, p. 40 for on-demand scanning tests). Of course,
calling the external ”icap-client” program is slower than doing the ICAP com-
munication completely in Perl. But for evaluation purposes, I did not consider
this as important and decided to not write a Perl ICAP module. Actually,
AMaViS + ICAP worked stable and may used to off-load (only) the virus scan-
ning process to another host, i.e. MTA and AMaViS running on host X, ICAP
anti-virus facility on host Y. For high-loaded mail servers, it’s probably a good
idea to off-load not only the virus scanning process but AMaViS completely,
i.e. MTA on host X, AMaViS + ICAP server on host Y (or AMaViS on host
Y, ICAP server on host Z).

54 Mailserver - AMaViS

Chapter 5

Fileserver - samba-vscan

Samba is an Open Source implementation of the SMB1/CIFS2 standard, used
by Microsoft network(s). Samba allows seamless integration of Linux/Unix file
servers into a Microsoft network, i.e. Windows (file) server(s) and clients. Gen-
erally speaking, Samba offers file-, print- and authentication services ([CH2001]).
Samba is one of the most popular open-source projects.

Basically two concepts are possible for protection the file server, which will
be discussed in this chapter.

5.1 Concepts

5.1.1 Not Integrated into Samba

The easiest method is to set-up a cron job, which will scan all shared directories
periodically. But this leads to a ”time gap”, in which an infected word document
can be placed on a share, without any notice. This document may have been
opened several times until the next cron job run starts.

Therefore, a better way is on-access scanning, i.e. to scan a file while it’s
being opened and/or closed. Assuming, the Samba servers runs under the
Linux OS, this can be done by ”hooking” system calls for opening or closing
a file to perform a virus scan first and deny access to the file upon infection.
For this purpose, the kernel sources could be changed or a kernel module could
be written. The first method requires a re-build of the kernel and patching the
kernel for every new kernel release which is somewhat clumsy. The more elegant
way is writing a kernel module, which will be explained briefly. The basic
concept as outlined below is taken from the Dazuko project ([JO2003]). The
name Dazuko comes from the german word ”Dateizugriffskontrolle”, which
means file access control.

”A module is an object file whose code can be linked to (and unlinked) from
the kernel at runtime. The object code usually consists of a set of functions
that implements a filesystem, a device driver, or other features at the kernel’s
upper layer.” A module ”[..] is executed in Kernel Mode on behalf of the

1Server Message Block, for details see ([RS2002])
2Common Internet File System, for details see ([CRH2003])

56 Fileserver - samba-vscan

current process, like any other statically linked kernel function” ([DBMC2001,
p. 11]). So, the kernel module extends/changes the functionality of e.g. the
”open” call. As Linux supports a wide range of file systems, you may assume
the ”open” call functions for each of this file systems has to be changed. But,
actually, since Linux supports a concept called as ”Virtual Filesystem” (aka
”Virtual Filesystem Switch” or VFS), this is not needed. The VFS ”is a kernel
software layer that handles all system calls related to a standard Unix filesys-
tem. Its main strength is providing a common interface to several kinds of
filesystems” ([DBMC2001, p. 328]). Or, in other words, ”the key idea behind
the VFS consists of introducing a common file model capable of representing
all supported filesystems. This model strictly mirrors the file model provided
by the traditional Unix filesystem”. ”The first Virtual Filesystem was included
in Sun Microsystem’s SunOS in 1986” ([DBMC2001, p. 330]). The actual
virus scanning isn’t done in kernel space, of course, but in userland instead.
So, e.g. a running anti-virus daemon communicates via a (character) device
(e.g. /dev/dazuko for Dazuko), e.g. for sending the filename to be scanned
from module to daemon and then the result back. In case of an infection, the
module ”tells” the kernel to not allow access. Obviously, this method can not
be used only for scanning Samba shares, but e.g. an ftp incoming directory.

Here’s a brief demonstration of Dazuko. First, the system hasn’t loaded the
on-access scanning facility. Therefore, a simple cat(1) on the file eicar.com is
possible.

cat eicar.com

X5O!P%@AP[4\PZX54(P^)7CC)7}$EICAR-STANDARD-\
ANTIVIRUS-TEST-FILE!$H+H*

Now, the service is being started
rcavguard start

Starting AntiVir on-access scanning facility: avguard
loading dazuko kernel module
creating character device
starting avguard

And cat(1) is no longer able to print the contents of the same file.

cat eicar.com

cat: eicar.com: Operation not permitted

Finally, the corresponding log snippet from /var/log/messages

rlss insmod: Using /lib/modules/2.4.19-4GB/misc/dazuko.o
rlss kernel: Dazuko: loaded, version=1.1.2, dev_major=253
rlss antivir[5610]: AntiVir ALERT: \
[Eicar-Test-Signatur virus] /tmp/eicar.com \
<<< Contains code of the Eicar-Test-Signatur virus

5.1 Concepts 57

5.1.2 Integrated into Samba

On-access scanning, integrated into Samba, can be achieved via the Samba VFS
switch, which was originally written as a patch for Samba 2.0 by Tim Potter.
It can be used to extend the regular Samba file system, i.e. features which are
lacking from the underlying Unix file system. ”For example, you might want a
Mac-like ’trash can’ where deleted files go, to give you a chance to recover for
accidental deletions. Or, you might want to translate between Unix and DOS
line-ending conventions on recognized kinds of text file. [..] In general, using a
VFS is an elegant way to add features to a filesystem, without having to know
everything about the filesystem implementation” ([DCB2000]).

Figure 5.1: Samba VFS (simplified), based on [AB2002]

So, to some extend similar to the kernel VFS as mentioned in the previous
section, Samba VFS can be used in a so-called VFS module to implement on-
access virus scanning by hooking Samba’s default ”open” and ”close” call for
example. Such an module will be dynamically loaded via dlopen.

Due to the limitation of the VFS layer in Samba 2.2.x, it is not possible
to use more than one VFS module per share. This could be considered as a
major drawback as it may be desirable to offer an on-access scanning and a
recycle bin facility (similar to the Windows recycle bin). This limitation does
not exist in Samba 3.x (in recent alpha versions as of date of this writing), due
to the cascading VFS module interface (also known as stackable VFS). VFS of
Samba 3.0 has several operation layers, but only the opaque and transparent
layer are differentiated. The opaque layer should be used by modules which
implement actual file system, mainly for implementing a new file system (like

58 Fileserver - samba-vscan

DB-based VFS). An operation marked as opaque is the final level, i.e. it does
not call anything beyond itself. An operation marked as transparent will call
underlying layer later. The other layer types (audit, splitter, scanner) were
designed to provide different degree of transparency and for diagnosing VFS
module behaviour (taken from comments of the file source/include/vfs.h of the
Samba 3.0 source code). Good documentation is currently lacking and the VFS
interface has changed from time to time and will most likely change now and
then3. For details, the samba-technical mailing list is a good resource; and, of
course, the Samba source code. It’s to be expected an extended VFS developers
chapter will be added to the Samba Developers Guide soon.

Using a VFS module for the share ”test” can be configured very easily with
the following setting in the Samba configuration file smb.conf:
[test]

path = /home/test
vfs object = /usr/local/samba/lib/vfs/vscan-icap.so
vfs options = config-file = /etc/samba/vscan-icap.conf

Here, the module vscan-icap.so (part of the samba-vscan package, see below)
will be used for on-access scanning (”vfs object” setting). The ”vfs options”
setting specifies the configuration file.

5.1.3 Pros & Cons

Of course, each concept has it’s pros and cons.
kernel-based:

+ multi-purpose, not limited to Samba

- limited to special Unix-OS and/or versions (i.e. only for Linux)

- sending a message via Windows Messaging (winpopup) to inform the user
about the virus being detected is not possible

Samba-integrated:

+ works with lot of Unices (e.g Linux, *BSD, HP-UX, Solaris, AIX)

+ sending message via Windows Messaging is possible

- limited to Samba

5.2 Requirements

As samba-vscan should provide the same features as similar anti-virus products
on Windows servers, the requirements are:
R1: block access of infected files
This is achieved by hooking the ”open” / ”close” call in the Samba VFS layer.
So, depending on the configuration, a file is scanned while it’s opened or closed;

3Samba 3.0 is currently alpha code, so changes are just normal.

5.2 Requirements 59

or both. If a file is infected, it will be blocked by not calling the underlying
”open” / ”close” function, but by returning -1 and setting errno to EACCESS.
The user will see an access denied dialog box (see figure 5.2).

Figure 5.2: Samba-vscan: access denied

Figure 5.3: Samba-vscan: virus notification

R2: move infected files into quarantine / delete file
If configured, an infected file will be moved into a special quarantine directory,
or deleted. Per default, an infected file is left untouched. Quarantine is done by
renaming the existing file; as the Samba VFS function ”rename” is used, even
renaming across filesystems works4 (as the file will be copied in this case, see
function copy reg() and vfswrap rename() in source/smbd/vfs-wrap.c (Samba
2.2.8 source code)).
R3: notification message
When access to a file is being blocked, Windows will display the ”Access denied”
message box. As this text is always the same and can not be changed, other
means to give more details to the user are required. If enabled, a notification

4rename(2) would return -1 and set errno to EXDEV in such as case

60 Fileserver - samba-vscan

message via the Windows Messaging Service5 will be sent. On Win9x, the
client application ”winpopup” must be running; on other Windows versions this
service must be enabled. The code tries not to flood the user with messages,
i.e. if the user clicks on the same file again, no notification will be sent. As,
according to [MS2002], the popup queue can only receive six messages, the
”notify only once” method tries to avoid that important (other) messages may
get lost otherwise. See screenshot 5.3 as an example.

The administrator won’t get a notification via this method. As samba-vscan
logs (see R4) all it’s activities via the syslog facility, a log watcher program can
be used to match on alert messages, which can be send then via email, pager
or SMS to the administrator.

Other requirements are:
R4: logging
All activities are logged via the syslog facility. Normal, informational messages
are logged with they keyword ”INFO”, error messages with ”ERROR” and virus
alerts with ”ALERT”. The syslog facility (here: subsystem, the type of pro-
gram that is logging the message, e.g. mail) and syslog priority6 are currently
compile-time settings (see include/vscan-global.h of samba-vscan source).
R5: configuration
samba-vscan provides a Samba-style configuration file for each virus scanner
it supports. These settings include general options, e.g. if verbose file logging
should be switched on or if file exceeding a specific file size it should be skipped.
As well as anti-virus product related settings, i.e. on which port the anti-virus
daemon is listening.
R6: multiple scanner support
The software ships with a own (VFS) module for each virus scanner being
supported:

• vscan-fprotd: for use with F-Prot Daemon

• vscan-icap: for use with an ICAP anti-virus service, currently only Syman-
tec AntiVirus Engine is fully supported (see 3.3.2, page 37 for details)

• vscan-kavp: for use with Kaspersky AntiVirus (kavdaemon)

• vscan-mks: for use with mks32

• vscan-oav: for use with OpenAntiVirus ScannerDaemon

• vscan-sophos: for use with Sophos Sweep via Sophie

• vscan-trend: for use with Trend Micro FileScanner via Trophie

R7: modular design / framework
As the modules offer basically the same functionality, most functions / facilities
can be provided via a framework. This includes the needed VFS definitions, the

5see Microsoft Knowledge Base Article - 168893 at http://support.microsoft.com/

default.aspx?scid=kb;en-us;Q168893 for details
6see man 5 syslog.conf and man 3 syslog

5.2 Requirements 61

Figure 5.4: Samba-vscan: architecture

quarantine & windows messaging stuff and last recently accessed file mechanism
(see R8). As well as some various other functions (i.e. logging). The parsing
of configuration file is currently implemented by each module, but as most
options are the same for each of them, this functionality could be provided
by the framework, too. Or, in other words, the framework could and should
be extended in future versions. The general architecture of samba-vscan is
illustrated by figure 5.4. The code of each supported virus scanner is located
in a corresponding sub directory. Definitions, constants and alike, used by each
module, is located in header files in the ”include” directory. Useful smaller
functions (i.e. logging) are provided by the framework, located in ”global”.
Mechanism, like quarantining and sending notification messages are provided
as a ”black box”, too.
R8: minimize the performance impact
Obviously, virus-scanning has an impact on performance. During development
the following two issues have been revealed.

I1: At least Win9x handles connections to shares via one socket connection to
Samba (only one smbd process will be forked and handling multiple shares).
On Linux/Unix, the Samba client utility ”smbclient” opens a socket connection
to Samba for each share (i.e. n connections for n shares). So, on Linux, if
scanning of file on one share is very time consuming, this does not effect the
performance of the other shares. On Win9x systems, this will slow down the
speed/responsiveness of all shares. Unfortunately, there’s no solution or even
any workaround known ([MP2001]).

I2: Windows may open a file several times in a very short period of time. Here
some examples: if a directory is listed, Windows opens some files to check their
file type; or if it’s an executable file, it will be opened to load the icon (so that
this icon can be displayed in the listing). Or, if Samba reports back ”access
denied”, Windows will try to open it up to six times, until Windows gives up
and shows the ”access denied” dialog box. This all happens usually in a time
frame below one second. But as the ”open” call is hooked, this results into
scanning a file multiple times, whereas once would be sufficient. To solve this,
the last recently accessed file(s) mechanism has been implemented. Per default,

62 Fileserver - samba-vscan

it stores 100 entries for 5 seconds (both is configurable). Each entry contains
the file name, the modified time of the file, the time the entry has been added
and a flag indicating whether this file is infected or not. Those entries are stored
in a double-linked list7. So, let’s assume, the file ”test.exe” is opened first. The
mechanism detects, it’s not in the list, so it has to be scanned. The result of
the scan (here: clean) will then be stored. On the second open, the access will
be granted without a scan (assumed, the file has not been changed). If the
file would have been infected, the access would be denied without a new scan
process. If the second access to the file happens later than five seconds, the
entry will be regarded as invalid. This mechanism has been proven effective up
to now.
This mechanism could be even used to reduce the need for scanning a file as
long it’s not being changed. But the entries are not stored permanently, i.e.
when the user disconnects from the shares, all entries will be destroyed.

Figure 5.5: Samba-vscan: single-click on PowerPoint file

Figure 5.5 shows the log snippet, after a user did a single click on a power
point presentation (using Explorer). As the Explorer is configured to show a
short ”preview” of files, the file is opened four times. The LRU mechanism
avoids the second, third and fourth scan and grants access immediately.

7a single-linked list would be sufficient, but Samba offers DLIST * macros for implementing
a double-linked list

5.2 Requirements 63

Figure 5.6: Samba-vscan: double click on infected Word file I

Figure 5.7: Samba-vscan: double click on infected Word file II

64 Fileserver - samba-vscan

Figure 5.8: F-Protd: double click on infected Word file

Figure 5.6 shows the log snipped of a double-click of a infected Word docu-
ment. Windows98 tries to open it four times (the ALERT line is the first try,
the log line ”Not scanned anymore. Access denied” is the second one. The third
and fourth attempt is not logged in full by syslog, but instead as ”last message
repeated 2 times”), but it’s actually scanned only once. The LRU mechanism
denies access immediately for the second up to fourth attempt.

Figure 5.7 illustrates it without the LRU mechanism. The file is actually
scanned four times - as showed also by the log snipped from F-Prot Daemon
(5.8).

5.3 Performance 65

5.3 Performance

ELF files (m:s) Office files (m:s)
retrieving (1) 1:43 1:25
AntiVir (2) 0:40 0:33
McAfee uvscan (3) 1:28 1:04
KAV (4) 1:26 0:43
SAVSE (local) (5) 2:59 1:53
SAVSE (➞ rlss2) (6) 4:08 1:51
WW (NAI) (local) (7) 3:57 3:38
WW (NAI) (➞ rlss2) (8) 4:45 3:32
AvGuard (9) 2:31 1:55
kavmonitor (w/o cache) (10) 5:18 2:21
kavmonitor (w cache, 2500) (11) 5:19 1:33
kavmonitor (w cache, 7000) (12) 2:03 -
vscan-icap (SAVSE), local (13) 4:09 2:39
vscan-icap (SAVSE), ➞ rlss2 (14) 5:26 3:03
vscan-icap (WW), local (15) 5:16 4:41
vscan-icap (WW), ➞ rlss2 (16) 6:01 4:37
vscan-kavp (17) 4:46 2:20

Table 5.1: Samba-vscan: performance results

Performance tests have been done using Samba 2.2.8a, running on host rlss,
and samba-vscan 0.3.3beta2. The ELF test included 6695 files (566 MB), the
Office test 2220 files (517 MB) (same files as for 3.4.2, p. 40). The results of
tests (2) up to (8) shows the elapsed time for the on-demand virus scan, i.e.
without Samba integration at all.
(1) time for retrieving files via ”smbclient //localhost/test -N -Tc backup.tar”
(done without any virus scanning, of course)
(2) scan time using H+BEDV AntiVir / Linux Version 2.0.7 (on-demand)
(3) scan time using NAI Virus Scan for Linux v4.24.0, Engine version 4.2.40,
DAT version 4257 (on-demand), e.g. ”uvscan /tmp/samba-test/office”
(4) scan time using Kaspersky Anti-Virus for Linux, v4.0.3.0 (on-demand), e.g.
”kavscanner /tmp/samba-test/office”
(5) scan time using Symantec Anti Virus Scan Engine 4.0.3.41 (on-demand),
e.g. ”find /home/samba-test/office -type f -exec icap-client {} \;
(6) same as (5), but SAVSE running on rlss2
(7) scan time using WebWasher CSM 4.3 fcs, build 474, NAI Scan Engine ver-
sion 4.2.40, DAT version 4257, on-demand, e.g. ”find /home/samba-test/office
-type f -exec icap-client {} \;
(8) same as (7), but WW CSM running on rlss2
(9) same as (1), but with kernel based on-access service AvGuard (Linux Ver-
sion 2.0.7), Dazuko 1.1.2
(10) same as (1), but with kernel based on-access service kavmonitor (KAV

66 Fileserver - samba-vscan

4.0.3.0, kernel module v1.7, kavmonitor 1.9, kavdaemon 4.0.3.0), file cache dis-
abled (CacheSize 0 in monitor.conf)
(11) same as (10), but with enabled file cache (with default CacheSize 2500)
(12) same as (11), but extended file cache (CacheSize 7500)
(13) same as (1), using the Samba VFS module vscan-icap (v0.3.3beta2), Syman-
tec AntiVirus Engine (see (5))
(14) same as (13), SAVSE running on rlss2 (see (6))
(15) same as (1), using the Samba VFS module vscan-icap (v0.3.3beta2), Web-
Washer CSM (see (7))
(16) same as (15), WW CSM running on rlss2 (see (8))
(17) same as (1), using the Samba VFS module vscan-kavp (v0.3.3beta2), KAV
(kavdaemon) 4.0.3.0

Figure 5.9: Performance results AvGuard + Samba

Figure 5.9 shows the results for H+BEDV AvGuard. The performance
impact due to the kernel module Dazuko seems be pretty small as the timing
results of AvGuard are nearly the same as of the summed up timing result for
retrieving files via smbclient and the timing result of the on-demand test done
with the command line scanner AntiVir. AvGuard currently misses a file cache,
to cache results of previous scanned files. This would speed up AvGuard; and
would avoid multiple scans of a file caused by Windows itself (as discussed in
5.2, p. 58).

By figure 5.10 the results for KAV are illustrated. For the Office file test,
the results of vscan-kavp and kavmonitor (file cache disabled) are basically the
same. And the elapsed time for both differs not that much from the summed
up time for retrieving files (without any virus protection) and the scan time
for the on-demand tests performed with KAV (kavscanner). For the ELF file

5.3 Performance 67

Figure 5.10: Performance results Samba, kavmonitor and vscan-kavp

test, the elapsed time result for vscan-kavp differs more than a minute from
the summed up result (retrieving+KAV). The file cache of kavmonitor seems to
be only efficient, when the maximum number of cache entries is at least equal
to the number of files beeing scanned: only with max 7000 cache entries, and
therefore more entries then files to be scanned in the ELF file test, a speed-up
is noticeable.

The results for the Symantec Anti Virus Engine are showed in figure 5.11.
Tests have been done with SAVSE running on localhost (L) and remote (R)
on host rlss2. Those both tests were performed via ”find ... type -f -exec
...” using the icap-client program, which means the icap-client utility has been
started for each file. That’s the reason why the summed up time retrieving
and SAVSE is greater than the elapsed time for vscan-icap using SAVSE (the
vscan-icap module is loaded only once when connecting to the Samba share,
and not for every file being accessed). The difference between the time results
”retrieving+SAVSE” and ”vscan-icap (SAVSE)” varies.

The remarks for SAVSE are valid for the results of WebWasher with the
NAI engine, too. NAI AV refers to the on-demand virus scanner ”uvscan”,
which has been instructed to scan the corresponding directories, including sub-
directories (e.g. ”uvscan –recursive /tmp/samba-test/office”)8. The difference
between the time results ”retrieving+WW” and ”vscan-icap (WW)” is about
20 seconds (except for the ELF tests, remote).

8a timing test as ”find /tmp/samba-test/office -type f -exec uvscan {} \ ;́’ took more than
20 minutes!

68 Fileserver - samba-vscan

Figure 5.11: Performance results Samba, vscan-icap with SAVSE

Figure 5.12: Performance results Samba, vscan-icap with WW CSM

5.4 Conclusion 69

Figure 5.13: Performance results Samba (summary)

A summary of the Samba test results is shown by figure 5.13: the perfor-
mance impact can be very huge! Therefore, future version of samba-vscan must
take corresponding measures to avoid scan process as much as possible (like
skipping certain file types; checksumming, to scan files with changed checksum
only; file cache, so only not yet scanned or modified files are actually scanned).
Whether a kernel-based solution or a Samba VFS-based solution is faster (i.e.
lower overhead) can not be answered, as only Kaspersky can be used via both
methods.

5.4 Conclusion

samba-vscan has been tested with Samba 2.2.x and Samba 3.0 up to alpha 219.
It provides the basic functionality, like denying access, sending notification mes-
sages and moving files into quarantine. Guessing from the feedback I received,
the current set of features is sufficient for most people. The biggest problem
as for now is speed - the performance loss caused by on-access scanning can be
rather big. As mentioned, future versions must have an extended last recently
used mechanism (file cache) to avoid the need of scanning file(s). The icap client
code is currently just a proof-of-concept, as it used blocking I/O and ICAP’s
Preview method is not implemented. So, samba-vscan plus ICAP is not ready
for production yet.

9any later version introduced changes to the VFS interface, which aren’t fully supported
by samba-vscan

70 Fileserver - samba-vscan

Nevertheless, samba-vscan is used successfully in some smaller workgroup
environments10 - at least to my knowledge. Moreover, the software received
positive feedback by commercial anti-virus companies11.

10see e.g. http://computerdienst.kleinau.org/modules/tutorials/index.php?op=

viewtutorial&tid=8
11e.g. by Fridrik Skulason (Frisk Software Int.), http://marc.theaimsgroup.com/?l=

openantivirus-discuss&m=103580628204941&w=2 or by Paul Ducklin (Sophos Plc), http://
www.zdnet.com.au/newstech/security/story/0,2000048600,20274520,00.htm

Chapter 6

FTP-/Web-Transfer -
squid-icap

In this chapter, some concepts for protection FTP/Web transfer will be dis-
cussed. The most common used web-proxy on Linux/Unix is Squid, therefore
we will focus on a solution for this proxy, using the ICAP protocol, named
squid-icap. It will be compared with another proof-of-concept implementation,
the squid-vscan project. As the Apache web-server can be configured to act as
a proxy server, the mod-vscan project will be outlined as well.

6.1 Concepts

6.1.1 Apache as Proxy

The web server Apache1 can act as a web proxy by using the mod proxy module
(and e.g. mod proxy http). The data, sent or received by the Apache server,
can be processed by filters, which can be provided by a module ([AHD2003b]).
The mod vscan project2 by Kazutoshi Kubota implements a filter for virus scan-
ning using ScannerDaemon of OpenAntiVirus.org. After building the module,
the module can be used via the following changes to the Apache configuration
file httpd.conf

<IfModule mod_vscan.c>
SetOutputFilter VSCAN

</IfModule>
mod vscan allows some run-time configuration settings, like the path to the

error document or to exclude some file-types from scanning ([KK2002]).

6.1.2 Squid as Proxy

squid-vscan3, is a project by Kurt Huwig. It requires squid-filter by Olaf
Titz, which implements filter capabilities for Squid4. A filter can be either a

1Apache 2.x is discussed here, httpd.apache.org
2http://www.willbe6.org/security/mod_vscan/
3http://www.openantivirus.org/projects.php
4http://sites.inka.de/~bigred/devel/squid-filter.html

72 FTP-/Web-Transfer - squid-icap

request filter (working on the URI), a header filter (operating on the request or
reply headers) or a content filter (operating on the reply body ([OT2002]). So,
basically, squid-vscan is a new filter module, which works in conjunction with
ScannerDaemon. By using squid-vscan, partial gets (i.e. retrieve only parts
of a file, e.g. resuming a file transfer, which has not been completed before)
are not possible anymore. This behaviour is needed to be able to scan the
complete file. The ”Filter” method ([KH2002]) is used for virus scanning, i.e.
squid-vscan sends the ”FILTER” command to ScannerDaemon, which responds
with ”Send/receive data to/from port ’34709/34710’ within 10 seconds” (the
ports are chosen randomly). Then, the data will be scanned ”on-the-fly”: squid
(squid-vscan) passes the data, received from the web server, directly to Scan-
nerDaemon, which does the virus scanning and sends the data back to Squid
(squid-vcan). Actually, sending a virus notification back to the client is not yet
really implemented. In the case of a virus infection, both ports will be simply
closed. Apart from the RPM installation, there’s nothing to configure.

squid-icap5, is a patch which adds ICAP client facility to Squid. squid-icap
is developed by HP Labs and WebWasher AG.

Figure 6.1: WebWasher virus notification page

5http://icap-server.sourceforge.net/squid.html

6.2 Performance 73

squid-icap offers several directives in the squid configuration file squid.conf
([RH2002]). Settings used were

icap_enable on
icap_preview_size -1
icap_send_client_ip on
icap_service vscan respmod_precache 0 \
icap://127.0.0.1:1344/avscan
icap_class vscan_class vscan
icap_access vscan_class allow all

Note: the preview size will determined via the OPTION request (as well as
other ICAP settings, like Transfer-Preview). The patched Squid will issue an
OPTION request just after it has started and then after every five minutes.

Figure 6.1 shows the WebWasher virus notification page, displayed after an
attempt to retrieve the eicar.com file.

6.2 Performance

Performance tests were done using three computers, as mentioned in section
3.4.1 (p. 39). The PII-266 MHz machine (IP: 192.168.0.1; NIC: 10 Mb/s) acts
as Web server running Apache, the AMD Duron maschine (IP: 192.168.0.2;
NIC: 100 Mb/s) runs Squid plus an anti-virus facility, the PIII-1GHz notebook
(IP: 192.168.0.3; NIC: 100 Mb/s) played the Web client (using wget for fetching
files). As anti-virus facility was used:

• WebWasher CSM 4.3 fcs using NAI Scan Engine (v4.2.40, DAT v4257)

• Symantec Anti Virus Scan Engine 4.0.3.41

• OpenAntiVirus ScannerDaemon 0.5.2

As proxy server

• Squid 2.5 STABLE1 including squid-icap 1.2.16, used in conjunction with
SAVSE and WW

• Squid 2.3 STABLE4 including squid-vscan 0.1.07, used with ScannerDae-
mon

As for each request three connections are needed (client ↔ Squid, Squid ↔

Web server, Squid ↔ ICAP server) and due the 100 Mb/s network connection
Squid is ”flooded” with requests, the maximum number of open file descriptors
must be increased, i.e. on a Linux system ”ulimit -n 8192”. I also increased
the overall file descriptor limit, i.e. ”echo ”32768”> /proc/sys/fs/file-max”

6available at http://sourceforge.net/project/showfiles.php?group_id=

47737&release_id=119622
7available at http://sourceforge.net/project/showfiles.php?group_id=

10590&release_id=68273

74 FTP-/Web-Transfer - squid-icap

HTML files(m:s) Image files (m:s)
Squid 0:27 0:30
Squid + SAVSE 4:14 0:37
Squid + WW CSM 3:13 0:37
WW CSM 0:31 0:31
squid-vscan 0:33 0:30

Table 6.1: Squid: performance results

Three tests have been performed:

• HTML files test: retrieving 6,631,430 Bytes in 1699 files, except for three
GIF files all HTML files. Files retrieved via wget -m (mirroring, means
retrieve all files)

• Image files test: 32,905,758 Bytes in 80 files, only very few HTML files,
mostly JPG/GIF images. Again, fetched via wget -m

• retrieving three large GIF files (31MB, 72 MB and 144 MB) to measure
the performance improvement by ICAPs Preview method

Figure 6.2: Performance results for Squid

Figure 6.2 shows the results of first two tests. It seems either the squid-icap
code and/or WW CSM (acting as ICAP server) and SAVSE can not han-
dle those numerous requests. As already mentioned, the proxy is ”flooded”
with HTTP GET requests issued by wget. Esp. when used with SAVSE,
wget shows lots of ”Connection closed at bye <bytepos>. Retrying.”. At the

6.2 Performance 75

31 MB (m:s) 72 MB (m:s) 144 MB (m:s)
Squid only 0:30 1:07 2:17
WebWasher 0:29 1:09 2:10
Squid+WW (no preview) 0:42 2:24 6:41
Squid+WW (preview) 0:41 2:05 5:39

Table 6.2: Squid: performance results retrieving large GIF file

same time ”tail -f cache.log” (one of Squid logs file) showed ”comm write:
fd table[<num>].rwstate != NULL”. Therefore, it took a long time to retrieve
all HTML files. The results for the image file test are better, because it contains
only 80 files and by the large files the proxy is not flooded with requests within
a second (as downloading takes some seconds).

Figure 6.3: Performance results for Squid retrieving large GIF file

The last test was retrieving some larger GIF files to measure the performance
loss, when Preview was disabled. With ICAPs preview mechanism, only 30
bytes are actually transfered to the ICAP server (here WebWasher). Without
preview, the complete file must be transfered to the ICAP server which takes
some time, obviously. By retrieving the 144 MB GIF file, the Preview method
saved about one minute. But even using this method, the download took very
long. Actually, squid-icap retrieves the complete file first, before sending it to
the client (a method which I would call ”store-and-forward”). Of course, this
behaviour is required, when retrieving e.g. an EXE or an ZIP file (here, the
complete data must be send to the ICAP server for scanning first). But in the
GIF file case, the data must not be send to the ICAP server (which has, in fact,

76 FTP-/Web-Transfer - squid-icap

send an ”204 No modification needed”) - so, the data can be ”piped-through”
to the client.

Here are the corresponding tcpdump log snippets (modified/simplified) to
illustrate how squid-icap client works:

First step, 192.168.0.3 (client) sends an HTTP GET request to 192.168.0.2
(proxy)

14:37:22.862026 192.168.0.3.34883 > 192.168.0.2.3128: S
14:37:22.862131 192.168.0.2.3128 > 192.168.0.3.34883: S
14:37:22.862284 192.168.0.3.34883 > 192.168.0.2.3128: . ack
14:37:22.863062 192.168.0.3.34883 > 192.168.0.2.3128: P
14:37:22.863157 192.168.0.2.3128 > 192.168.0.3.34883: . ack

Squid starts to retrieve the requested file from the Web server (192.168.0.1)

14:37:22.863836 192.168.0.2.36473 > 192.168.0.1.80: S
14:37:22.864511 192.168.0.1.80 > 192.168.0.2.36473: S
14:37:22.864613 192.168.0.2.36473 > 192.168.0.1.80: . ack
14:37:22.864998 192.168.0.2.36473 > 192.168.0.1.80: P

Squids sends an ICAP preview request to the ICAP server (listening on
127.0.0.1), shown here in full-length (i.e. not shortened)

14:37:22.865195 127.0.0.1.36474 > 127.0.0.1.1344: S
14:37:22.865257 127.0.0.1.1344 > 127.0.0.1.36474: S
14:37:22.865295 127.0.0.1.36474 > 127.0.0.1.1344: . ack
14:37:22.895595 127.0.0.1.36474 > 127.0.0.1.1344: P
14:37:22.895664 127.0.0.1.1344 > 127.0.0.1.36474: . ack
14:37:22.896734 127.0.0.1.1344 > 127.0.0.1.36474: P
14:37:22.896784 127.0.0.1.36474 > 127.0.0.1.1344: . ack
14:37:22.896906 127.0.0.1.1344 > 127.0.0.1.36474: F
14:37:22.897347 127.0.0.1.36474 > 127.0.0.1.1344: F
14:37:22.897383 127.0.0.1.1344 > 127.0.0.1.36474: .

Squid is still retrieving the file, the download is finished nearly two minutes
later

14:39:39.836020 192.168.0.1.80 > 192.168.0.2.36473: P
14:39:39.836055 192.168.0.2.36473 > 192.168.0.1.80: . ack
14:39:55.949254 192.168.0.1.80 > 192.168.0.2.36473: F
14:39:55.949431 192.168.0.2.36473 > 192.168.0.1.80: F
14:39:55.949888 192.168.0.1.80 > 192.168.0.2.36473: . ack

Now, Squid sends the data back to the client

14:39:39.836746 192.168.0.2.3128 > 192.168.0.3.34883: .
14:39:39.836789 192.168.0.2.3128 > 192.168.0.3.34883: .
14:39:39.836813 192.168.0.2.3128 > 192.168.0.3.34883: P

6.3 Conclusion 77

14:39:39.837316 192.168.0.3.34883 > 192.168.0.2.3128: . ack
14:39:39.837422 192.168.0.2.3128 > 192.168.0.3.34883: .
14:39:39.837440 192.168.0.2.3128 > 192.168.0.3.34883: .
14:39:39.837369 192.168.0.3.34883 > 192.168.0.2.3128: . ack
[..]
14:43:45.707313 192.168.0.2.3128 > 192.168.0.3.34883: F
14:43:45.707694 192.168.0.3.34883 > 192.168.0.2.3128: F
14:43:45.707775 192.168.0.2.3128 > 192.168.0.3.34883: . ack

When retrieving a large file or e.g. a ZIP-file, which needs to be downloaded
in full by the proxy and requires long time until virus scanning is finished, the
browser may time-out, as no data is received. Or, the user may cancel the
download, as he’s under the impression of a slow Internet connection. Several
workarounds exists for this problem, e.g. forwarding some bytes to the bowser.
But as this is a generic problem and not related to the ICAP protocol, it’s not
discussed here. See [MST2002] for details and a suggested solution.

6.3 Conclusion

Squid (including the squid-icap) worked flawlessly in my tests. I used it with
SAVSE for normal, every day browsing and the performance loss was very low.
Nevertheless, it should be considered to improve performance of files which need
not to be scanned by not ”buffering” the complete file. Instead, forward the
data immediately to the client in this particular case.

78 FTP-/Web-Transfer - squid-icap

Chapter 7

Résumé

As shown on the last three chapters, server-based virus protection running on
Unix/Linux servers (tier 2 and 3) is possible. As the mentioned tools support
the ICAP protocol, an ICAP anti-virus service (running on a dedicated host)
may serve as multi-purpose virus scanning facility for mail, web and proxy
server(s). By this concept the resource-intensive virus scanning task can be off-
loaded. This might be interesting esp. for CD-only based firewalls or appliances
with limited (hardware) resources. Or, if the preferred anti-virus vendor does
not offer a version for the OS (say AIX) the mail/file/proxy server runs, one
might add a Linux box running the ICAP enabled anti-virus server. Migrating
from anti-virus vendor A to B should be in most cases very easy; but the
choice is currently very limited as only very few products supporting ICAP are
available.

AMaViS, the oldest and therefore the most stable and mature solution dis-
cussed in this thesis, serves low- and medium-volume mail servers. Squid (squid-
icap) worked stable and is worth a look. samba-vscan is most likely only usable
for smaller workgroups at the moment.

ICAP will be most likely superseded by OPES sooner or later. OPES looks
promising, although it’s not specified in details yet. Currently, it can not be
foreseen when a ”stable” draft status is reached which allows a first implemen-
tation.

Of course, I will continue to work on AMaViS and samba-vscan. For the
latter one better ICAP support (i.e. ICAP Preview method), exclusion of files
based on file type and improved file cache are planned. And I will follow the
ICAP/OPES discussion(s) on the relevant mailing lists.

80 Résumé

List of Figures

1.1 Payload of Ambulance Car virus 2
1.2 Overwriting / Appending virus 3
1.3 Screenshot of VBS virus/worm construction kit 8

2.1 Connection invoking a Content Vectoring Server 21
2.2 CVP data flows . 22

3.1 Request Modification . 24
3.2 Request Satisfication . 24
3.3 Response Modification . 25
3.4 Result Modification . 26
3.5 Symantec AntiVirus Scan Engine 27
3.6 Web Washer CSM suite . 29
3.7 Performance results AVI file test, WebWasher, host rlss 42
3.8 Performance results AVI file test, WebWasher, host rlss2 42
3.9 Performance results AVI file test, SAVSE, host rlss 43
3.10 Performance results AVI file test, SAVSE, host rlss2 43
3.11 Performance results ELF/Office file test, SAVSE 44
3.12 Performance results ELF/Office file test, WebWasher 45
3.13 Performance results ELF/Office file test, NAI AV, WebWasher . 45

4.1 Sendmail: filter example . 50
4.2 Postfix: simple content filtering example 51
4.3 Postfix: advanced content filtering example 52

5.1 Samba VFS (simplified) . 57
5.2 Samba-vscan: access denied . 59
5.3 Samba-vscan: virus notification 59
5.4 Samba-vscan: architecture . 61
5.5 Samba-vscan: single-click on PowerPoint file 62
5.6 Samba-vscan: double click on infected Word file I 63
5.7 Samba-vscan: double click on infected Word file II 63
5.8 F-Protd: double click on infected Word file 64
5.9 Performance results AvGuard + Samba 66
5.10 Performance results Samba, kavmonitor and vscan-kavp 67
5.11 Performance results Samba, vscan-icap with SAVSE 68
5.12 Performance results Samba, vscan-icap with WW CSM 68

82 List of Figures

5.13 Performance results Samba (summary) 69

6.1 WebWasher virus notification page 72
6.2 Performance results for Squid . 74
6.3 Performance results for Squid retrieving large GIF file 75

List of Tables

3.1 Service Architecture Summary 26
3.2 Available ICAP AntiVirus Servers 27
3.3 Performance results for AVI file test 41
3.4 Performance Results for ELF/Office files test 44

4.1 Milter callbacks related to SMTP transaction 50

5.1 Samba-vscan: performance results 65

6.1 Squid: performance results . 74
6.2 Squid: performance results retrieving large GIF file 75

84 List of Tables

Bibliography

[FC1984] Fred Cohen. Computer Viruses - Theory and Experiments. Chap-
ter 2 - A Computer virus. http://www.all.net/books/virus/
part2.html.

[BSI1994] BSI. Informationen zu Computer-Viren. Schriftenreihe zur IT-
Sicherheit, Band 2, Juni 1994.

[CS1995] CHIP Special. Computer-Viren ’95. Vogel Verlag, 1995.

[MR1995] Martin Roesler. FAQ der VIRUS.GER - Version 2.3. http://www.
vhm.haitec.de/faq/

[FSC2003] F-Secure Corp. F-Secure Virus Screenshots Archive. F-Secure
Corporation, 2003. http://www.f-secure.com/virus-info/
v-pics/

[AM2000] Andreas Marx. Die Geschichte der Computerviren. 1997/2000.
http://www.vhm.haitec.de/konferenz/1997/history.htm

[FP2000] François Padget. Computer Viruses: The Technological
Leap. EICAR Conference 2000, http://download.nai.com/
products/media/vil/rtf/fpaget_EICAR_2000.rtf

[EK2001] Eugene Kaspersky and Andy Nikishin. Back to the future - again.
Proceedins of Virus Bulletin Conference 2001.

[RS1996] Rune Skardhamar. Virus Detection And Elimination, 1996. Aca-
demic Press, Inc.

[VBM1998] What the HTML?. Virus Bulletin Magazine, December 1998,
Virus Bulletin Ltd.

[CR1999] Costin Raiu. A Hill of Beans. Virus Bulletin Magazine, March
1999, Virus Bulletin Ltd.

[PS1999] Peter Szor. Beast Regards. Virus Bulletin Magazine, June 1999,
Virus Bulletin Ltd.

[ANMK1999] Andi Nikishin & Mike Pavluschick. pOLEmorphism. Virus Bul-
letin Magazine, June 1999, Virus Bulletin Ltd.

86 Bibliography

[NF1999] Nick FitzGerald. Gala Premiere. Virus Bulletin Magazine, July
1999, Virus Bulletin Ltd.

[IM1999a] Dr Igor Muttik. Macro Viruses - Part 1. Virus Bulletin Magazine,
September 1999, Virus Bulletin Ltd.

[IM1999b] Dr Igor Muttik. Macro Viruses - Part 2. Virus Bulletin Magazin,
October 1999, Virus Bulletin Ltd.

[VB1996] Vesselin Bontchev. Possible Macrovirus Attacks and How to Pre-
vent Them. Proceedings of Virus Bulletin Concerence 1996.

[SB1996] Steve Baily. Unix viruses - a feasability study. Proceedings of the
Virus Bulletin Conference 1996.

[DAJ1997] Dr. David Aubrey-Jones. Macro Attacks On Office97. Proceedins
of Virus Bulletin Conference 1997.

[MO1997] Martin Overton. FAT32 - new problems for anti-virus, or viruses?.
Proceedins of Virus Bulletin Conference 1997.

[VB1997] Vesselin Bontechev. Macrovirus identification problems. Procede-
ings of Virus Bulletin Conference 1997.

[VBKT2002] Vesselin Bontechev & Katrin Tocheva. Macro and script virus
polymorphism. Proceedings of Virus Bulletin Conference 2002.

[SK1999] Stefan Kurtzhals. Aktuelle Entwicklungen im Bereich der
Makroviren. VIRUS.GER-Conference 1999. http://www.vhm.
haitec.de/konferenz/1999/makroviren/

[JK1998] Jakub Kaminski. Disappearing Macros - Natural Devolution of
Upconverted Macros. Proceedings of Virus Bulletin Conference
1998.

[VB1998] Vesselin Bontchev. The ’Pros’ and ’Cons’ of WordBasic Virus Up-
conversion. Proceedings of Virus Bulletin Conference 1998.

[MH1998] Mikko Hyponnen. Putting Macros under Control. Proceedings of
Virus Bulleting Conference 1998.

[PS1998] Peter Szor. Attacks on Win32. Proceedings of Virus Bulletin Con-
ference 1998.

[RJZ1999] Righard J Zwienenberg. Office Millenium: what does it (not)
give?. Proceedings of Virus Bulletin Conference 1999.

[KT1999] Katrin Tocheva. Multiple Infections. Proceedings of Virus Bul-
letin Conference 1999.

[MVO1999] Martin van Oers. Automatic MS Outlook VB Script. Proceedings
of Virus Bulletin Conference 1999.

Bibliography 87

[JK1999] Jakub Kaminiski. Hide and Seek - Stealth Techniques of Macro
Viruses. Proceedings of Virus Bulletin Conference 1999.

[CN1999] Carey Nachenberg. Computer Parasitology. Proceedings of Virus
Bulletin Conference 1999.

[CN1996] Carey Nachenberg. Understanding and Managing Polymorphic
Viruses. The Symantec Enterprise Papers. Symantec, 1996.

[TM2002] Taras Malivanchuk. The Win32 Worms: classification and possi-
bility of heuristic detection. Proceedings of Virus Bulletin Con-
ference 2002.

[PS2000] Peter Szor. Attacks on Win32 - Part II. Proceedings of Virus
Bulletin Conference 2000.

[JK2000] Jakub Kaminski. Linux Malware - has the next battlefield been
decided?. Proceedings of Virus Bulletin Conference 2000.

[MVO2000] Marius van Oers. Linux Viruses - ELF file format. Proceedings of
Virus Bulletin Conference 2000.

[JK2001] Jakub Kaminski. Not so quiet on the Linux front: Linux Malware
II. Proceedings of Virus Bulletin Conference 2001.

[ECPZ2002] Eric Chien & Peter Szor. Blended Attacks. Exploits, vulnerabili-
ties and buffer-overflow techniques in computer viruses. Proceed-
ings of Virus Bulletin Conference 2002.

[KC2002] Katherine Carr. Sophos Anti-Virus detection: a technical
overview, Sophos, Oxford, UK, October 2002, http://www.
sophos.com/sophos/docs/eng/papers/sav-overview.pdf

[AM2002] av-test.org, GEGA IT GbR, Andreas Marx Comparison Test
2002-01, category ”archived and compressed file formats”
http://www.av-test.org/online/sites/os03.php3?js=
0&test=2002-01&p=1

[CGR2002] Costin G. Raiu. OpenAV: Developing Open Source AntiVirus En-
gines. http://www.securityfocus.com/infocus/1650

[IM2000] Igor Muttik. Stripping down an AV engine. Proceedings of Virus
Bulletin Conference 2000.

[FF2001] Francisco Fernandez. Heuristic Engines. Proceedings of Virus Bul-
letin Conference 2001.

[MS2002] Markus Schmall. Heuristic Techniques in AV Solutions: An
Overview. http://www.securityfocus.com/infocus/1542

[RM2002] Richard Marko. Heuristics: Retroperpective and future. Proceed-
ings of Virus Bulletin Conference 2002.

88 Bibliography

[CN2002] Carey Nachenberg. Behavior Blocking: The Next Step in Anti-
Virus Protection. http://www.securityfocus.com/infocus/
1557

[LL2001] Lixim Lu. Reducing false positives in behaviour blocking. Pro-
ceedings of the Virus Bulletin Conference 2001.

[AN1999] Andy Nikishin. Advantages and Disadvanteges of modern in-
tegrity checkers. Proceedings of Virus Bulletin Conference 1999.

[ICSA2002] ICSA Labs, Larry Bridwell. ICSA Labs 8th Annual Computer
Virus Prevalence Survey 2002. ICSA Labs, a devision of TruSecure
Corp. http://www.trusecure.com (registration needed)

[SAVI] Sophos Plc. SAVI Developer Toolkit - User manual. http://www.
sophos.com/support/docs/#savi

[WRS1992] W. Richard Stevens. Advanced Programming in the UNIX r© En-
vironment. Addison-Wesley, 1992. Seventh Printing, September
1994.

[LH2001] Lars Hecking. Sophie experiences. Posting to the amavis-user
mailing list, 08/15/2001. http://marc.theaimsgroup.com/?l=
amavis-user&m=99788946018453&w=2

[RFC1945] T. Berners-Lee et al. Hypertext Transfer Protocol – HTTP/1.0.
RFC 1945. May, 1999. Obsoleted by RFC 2068/2616. ftp://ftp.
rfc-editor.org/in-notes/rfc1945.txt

[CVP2002] Check Point Software Technologies Ltd. Check PointTM VPN-
1/FireWall-1 r© CVP (Content Vectoring Protocol) API Specifica-
tion, NG FP3. September 2002. Available at http://www.opsec.
com after a registration has been filed.

[KA2001] Konstantin Agouros How to write a CVP-Client?. Posting to
newsgroup cp.products.opsec.sdk, 5 Oct 2001 21:58:25 +0200,
Message-ID: <elwood.1002311864@news.agouros.de>.

[ICAP01] Network Appliance. Internet Content Adaptation Protocol
(ICAP). Version 1.01, 7/30/01. http://www.i-cap.org/docs/
icap_whitepaper_v1-01.pdf

[RFC3507] J. Eslon et al. Internet Content Adaptation Protocol (ICAP).
RFC 3507. April 2003. http://www.ietf.org/rfc/rfc3507.txt

[RFC2616] R. Fielding et al. Hypertext Transfer Protocol – HTTP/1.1.
RFC 2616. June 1999. ftp://ftp.rfc-editor.org/in-notes/
rfc2616.txt

[MST2003] Martin Stecher. ICAP Extensions. Draft. April, 2003. http://
www.martin-stecher.de/draft-stecher-icap-subid-00.txt

Bibliography 89

[FB2002] Frank Berzau. Summery of the ICAP Discussion. Presentation
for the 55th IETF Meeting in Atlanta, Georgia, November 17-
21, 2002. http://www.ietf.org/proceedings/02nov/slides/
opes-3.pdf

[WRS2000] W. Richard Stevens. Programmieren von Unix Netzwerken. Net-
zwerk APIs: Sockets und XTI. Carl Hanser Verlag, 2000, 2. Au-
flage.

[SAVSE02] Symantec Corporation. Symantec AntiVirusTMScan Engine. Doc-
umentation version 4.0, 12/2002. Symantec Corporation, 2000-
202 (part of the SAVSE product).

[SSS02] Symantec Corporation. Symantec AntiVirusTMScan Engine Soft-
ware Developer s Guide. Documentation version 4.0. Symantec
Corporation, 2000-2002.

[OPS03] IETF OPES WG. Open Pluggable Edge Services (opes). http://
www.ietf.org/html.charters/opes-charter.html

[ABA2002] A. Barbir et al. OPES Use Cases and Deployment Sce-
narios. Internet Draft. Aug 5, 2002. Expires: Febru-
ary 5, 2002. http://www.ietf.org/internet-drafts/
draft-ietf-opes-scenarios-01.txt

[AR2003] A. Rousskov. OPES Callout Protocol Core. Internet Draft.
April 10, 2003. Expires: October 9, 2003. http://www.
measurement-factory.com/tmp/opes/snapshots/latest/
ocp-spec.html

[RL2003] Rainer Link et al. AMaViS & sendmail. README.sendmail,
part of the AMaViS documentation, http://cvsweb.amavis.
org/amavis/README.sendmail

[GW2003] Geoff Winkless et al. How to use AMaViS with send-
mail/libmilter. README.milter, part of the AMaViS documen-
tation, http://cvsweb.amavis.org/amavis/README.milter

[SI2000] Sendmail Inc. Filtering Mail with Sendmail. http://www.
sendmail.com/partner/resources/development/milter_
api/index.html

[WV2003] Wietse Venema. Postfix Content Filtering. FILTER README,
part of the postfix distribution, http://www.postfix.org

[LH2003] Lars Hecking et al. How To Use AMaViS With postfix.
README.postfix, part of the AMaViS documentation, http://
cvsweb.amavis.org/amavis/README.postfix

[CH2001] Chris Hertel. Samba: An Introduction. http://de.samba.org/
samba/docs/SambaIntro.html

90 Bibliography

[RS2002] Richard Sharpe. Just what is SMB?. http://www.samba.org/
cifs/docs/what-is-smb.html

[CRH2003] Christopher R. Hertel. Implementing CIFS. http://www.ubiqx.
org/cifs/Intro.html#INTRO.2

[DBMC2001] Daniel P. Bovet & Marco Cesati. Understanding the Linux kernel.
O’Reilly & Associates, Inc., 2001.

[JO2003] John Ogness, H+BEDV Datentechnik GmbH. Dazuko project,
http://www.dazuko.org/

[DCB2000] Dave Collier-Brown. VFS tutorial. http://www.geocities.com/
orville_torpid/papers/vfs_tutorial.html (outdated)

[AB2002] Alexander Bokovoy. Extending Samba with cascaded VFS mod-
ules. Proceedings of SambaXP 2002 conference. http://www.
sambaxp.org/sambaXP_2002/archive.html

[MSC2002] Microsoft Corp. Popup Message Queue Can Only Re-
ceive 6 Messages. Microsoft Knowledge Base Article -
132524, http://support.microsoft.com/default.aspx?scid=
kb;en-us;132524

[MP2001] Martin Pool. Re: VFS: connect to share is different with
Win98 and smbclient. Posting to samba-technical mailing
list, http://marc.theaimsgroup.com/?l=samba-technical&m=
100632388426164&w=2

[AHD2003a] Apache HTTP Server Documentation Project. Apache module
mod proxy. Apache HTTP Server 2.0 Documentation. http://
httpd.apache.org/docs-2.0/mod/mod_proxy.html

[AHD2003b] Apache HTTP Server Documentation Project. Filters. Apache
HTTP Server 2.0 Documentation. http://httpd.apache.org/
docs-2.0/filter.html

[KK2002] Kazutoshi Kubota. mod vscan. http://www.willbe6.org/
security/mod_vscan/

[OT2002] Olaf Titz. Filter modules for Squid. http://sites.inka.de/
~bigred/devel/squid-filter.html

[KH2002] Kurt Huwig. ScannerDaemon Howto. http://cvs.sourceforge.
net/cgi-bin/viewcvs.cgi/*checkout*/openantivirus/
java/doc/ScannerDaemon-Howto.html?rev=1.9

[RH2002] Ralf Horstmann. Squid ICAP Client Configuration. http://
icap-server.sourceforge.net/icap-configuration.html

[MST2002] Martin Stecher. LateClearance Content Encoding. Internet Draft.
October, 2002. Expires April, 2003. http://www.ietf.org/
internet-drafts/draft-stecher-lclr-encoding-00.txt

Appendix A

GNU Free Documentation
License

GNU Free Documentation License
Version 1.2, November 2002

Copyright (C) 2000,2001,2002 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other
functional and useful document "free" in the sense of freedom: to
assure everyone the effective freedom to copy and redistribute it,
with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible
for modifications made by others.

This License is a kind of "copyleft", which means that derivative
works of the document must themselves be free in the same sense. It
complements the GNU General Public License, which is a copyleft
license designed for free software.

We have designed this License in order to use it for manuals for free
software, because free software needs free documentation: a free
program should come with manuals providing the same freedoms that the
software does. But this License is not limited to software manuals;
it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License

92 GNU Free Documentation License

principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that
contains a notice placed by the copyright holder saying it can be
distributed under the terms of this License. Such a notice grants a
world-wide, royalty-free license, unlimited in duration, to use that
work under the conditions stated herein. The "Document", below,
refers to any such manual or work. Any member of the public is a
licensee, and is addressed as "you". You accept the license if you
copy, modify or distribute the work in a way requiring permission
under copyright law.

A "Modified Version" of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with
modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of
the Document that deals exclusively with the relationship of the
publishers or authors of the Document to the Document’s overall subject
(or to related matters) and contains nothing that could fall directly
within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any
mathematics.) The relationship could be a matter of historical
connection with the subject or with related matters, or of legal,
commercial, philosophical, ethical or political position regarding
them.

The "Invariant Sections" are certain Secondary Sections whose titles
are designated, as being those of Invariant Sections, in the notice
that says that the Document is released under this License. If a
section does not fit the above definition of Secondary then it is not
allowed to be designated as Invariant. The Document may contain zero
Invariant Sections. If the Document does not identify any Invariant
Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed,
as Front-Cover Texts or Back-Cover Texts, in the notice that says that
the Document is released under this License. A Front-Cover Text may
be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy,
represented in a format whose specification is available to the
general public, that is suitable for revising the document
straightforwardly with generic text editors or (for images composed of

93

pixels) generic paint programs or (for drawings) some widely available
drawing editor, and that is suitable for input to text formatters or
for automatic translation to a variety of formats suitable for input
to text formatters. A copy made in an otherwise Transparent file
format whose markup, or absence of markup, has been arranged to thwart
or discourage subsequent modification by readers is not Transparent.
An image format is not Transparent if used for any substantial amount
of text. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain
ASCII without markup, Texinfo input format, LaTeX input format, SGML
or XML using a publicly available DTD, and standard-conforming simple
HTML, PostScript or PDF designed for human modification. Examples of
transparent image formats include PNG, XCF and JPG. Opaque formats
include proprietary formats that can be read and edited only by
proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the
machine-generated HTML, PostScript or PDF produced by some word
processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself,
plus such following pages as are needed to hold, legibly, the material
this License requires to appear in the title page. For works in
formats which do not have any title page as such, "Title Page" means
the text near the most prominent appearance of the work’s title,
preceding the beginning of the body of the text.

A section "Entitled XYZ" means a named subunit of the Document whose
title either is precisely XYZ or contains XYZ in parentheses following
text that translates XYZ in another language. (Here XYZ stands for a
specific section name mentioned below, such as "Acknowledgements",
"Dedications", "Endorsements", or "History".) To "Preserve the Title"
of such a section when you modify the Document means that it remains a
section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which
states that this License applies to the Document. These Warranty
Disclaimers are considered to be included by reference in this
License, but only as regards disclaiming warranties: any other
implication that these Warranty Disclaimers may have is void and has
no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either
commercially or noncommercially, provided that this License, the

94 GNU Free Documentation License

copyright notices, and the license notice saying this License applies
to the Document are reproduced in all copies, and that you add no other
conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further
copying of the copies you make or distribute. However, you may accept
compensation in exchange for copies. If you distribute a large enough
number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and
you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have
printed covers) of the Document, numbering more than 100, and the
Document’s license notice requires Cover Texts, you must enclose the
copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify
you as the publisher of these copies. The front cover must present
the full title with all words of the title equally prominent and
visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve
the title of the Document and satisfy these conditions, can be treated
as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit
legibly, you should put the first ones listed (as many as fit
reasonably) on the actual cover, and continue the rest onto adjacent
pages.

If you publish or distribute Opaque copies of the Document numbering
more than 100, you must either include a machine-readable Transparent
copy along with each Opaque copy, or state in or with each Opaque copy
a computer-network location from which the general network-using
public has access to download using public-standard network protocols
a complete Transparent copy of the Document, free of added material.
If you use the latter option, you must take reasonably prudent steps,
when you begin distribution of Opaque copies in quantity, to ensure
that this Transparent copy will remain thus accessible at the stated
location until at least one year after the last time you distribute an
Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the
Document well before redistributing any large number of copies, to give

95

them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under
the conditions of sections 2 and 3 above, provided that you release
the Modified Version under precisely this License, with the Modified
Version filling the role of the Document, thus licensing distribution
and modification of the Modified Version to whoever possesses a copy
of it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct
from that of the Document, and from those of previous versions
(which should, if there were any, be listed in the History section
of the Document). You may use the same title as a previous version
if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities
responsible for authorship of the modifications in the Modified
Version, together with at least five of the principal authors of the
Document (all of its principal authors, if it has fewer than five),
unless they release you from this requirement.

C. State on the Title page the name of the publisher of the
Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications

adjacent to the other copyright notices.
F. Include, immediately after the copyright notices, a license notice

giving the public permission to use the Modified Version under the
terms of this License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections
and required Cover Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.
I. Preserve the section Entitled "History", Preserve its Title, and add

to it an item stating at least the title, year, new authors, and
publisher of the Modified Version as given on the Title Page. If
there is no section Entitled "History" in the Document, create one
stating the title, year, authors, and publisher of the Document as
given on its Title Page, then add an item describing the Modified
Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for
public access to a Transparent copy of the Document, and likewise
the network locations given in the Document for previous versions
it was based on. These may be placed in the "History" section.
You may omit a network location for a work that was published at
least four years before the Document itself, or if the original
publisher of the version it refers to gives permission.

96 GNU Free Documentation License

K. For any section Entitled "Acknowledgements" or "Dedications",
Preserve the Title of the section, and preserve in the section all
the substance and tone of each of the contributor acknowledgements
and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document,
unaltered in their text and in their titles. Section numbers
or the equivalent are not considered part of the section titles.

M. Delete any section Entitled "Endorsements". Such a section
may not be included in the Modified Version.

N. Do not retitle any existing section to be Entitled "Endorsements"
or to conflict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or
appendices that qualify as Secondary Sections and contain no material
copied from the Document, you may at your option designate some or all
of these sections as invariant. To do this, add their titles to the
list of Invariant Sections in the Modified Version’s license notice.
These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains
nothing but endorsements of your Modified Version by various
parties--for example, statements of peer review or that the text has
been approved by an organization as the authoritative definition of a
standard.

You may add a passage of up to five words as a Front-Cover Text, and a
passage of up to 25 words as a Back-Cover Text, to the end of the list
of Cover Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or
through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or
by arrangement made by the same entity you are acting on behalf of,
you may not add another; but you may replace the old one, on explicit
permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License
give permission to use their names for publicity for or to assert or
imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this
License, under the terms defined in section 4 above for modified
versions, provided that you include in the combination all of the
Invariant Sections of all of the original documents, unmodified, and

97

list them all as Invariant Sections of your combined work in its
license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and
multiple identical Invariant Sections may be replaced with a single
copy. If there are multiple Invariant Sections with the same name but
different contents, make the title of each such section unique by
adding at the end of it, in parentheses, the name of the original
author or publisher of that section if known, or else a unique number.
Make the same adjustment to the section titles in the list of
Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History"
in the various original documents, forming one section Entitled
"History"; likewise combine any sections Entitled "Acknowledgements",
and any sections Entitled "Dedications". You must delete all sections
Entitled "Endorsements".

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents
released under this License, and replace the individual copies of this
License in the various documents with a single copy that is included in
the collection, provided that you follow the rules of this License for
verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute
it individually under this License, provided you insert a copy of this
License into the extracted document, and follow this License in all
other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate
and independent documents or works, in or on a volume of a storage or
distribution medium, is called an "aggregate" if the copyright
resulting from the compilation is not used to limit the legal rights
of the compilation’s users beyond what the individual works permit.
When the Document is included in an aggregate, this License does not
apply to the other works in the aggregate which are not themselves
derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these
copies of the Document, then if the Document is less than one half of
the entire aggregate, the Document’s Cover Texts may be placed on

98 GNU Free Documentation License

covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form.
Otherwise they must appear on printed covers that bracket the whole
aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may
distribute translations of the Document under the terms of section 4.
Replacing Invariant Sections with translations requires special
permission from their copyright holders, but you may include
translations of some or all Invariant Sections in addition to the
original versions of these Invariant Sections. You may include a
translation of this License, and all the license notices in the
Document, and any Warranty Disclaimers, provided that you also include
the original English version of this License and the original versions
of those notices and disclaimers. In case of a disagreement between
the translation and the original version of this License or a notice
or disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgements",
"Dedications", or "History", the requirement (section 4) to Preserve
its Title (section 1) will typically require changing the actual
title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except
as expressly provided for under this License. Any other attempt to
copy, modify, sublicense or distribute the Document is void, and will
automatically terminate your rights under this License. However,
parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such
parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions
of the GNU Free Documentation License from time to time. Such new
versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number.

99

If the Document specifies that a particular numbered version of this
License "or any later version" applies to it, you have the option of
following the terms and conditions either of that specified version or
of any later version that has been published (not as a draft) by the
Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not
as a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of
the License in the document and put the following copyright and
license notices just after the title page:

Copyright (c) YEAR YOUR NAME.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2
or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license is included in the section entitled "GNU
Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts,
replace the "with...Texts." line with this:

with the Invariant Sections being LIST THEIR TITLES, with the
Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other
combination of the three, merge those two alternatives to suit the
situation.

If your document contains nontrivial examples of program code, we
recommend releasing these examples in parallel under your choice of
free software license, such as the GNU General Public License,
to permit their use in free software.

